

SYSTEM-LEVEL DESIGN TECHNIQUES FOR ENERGY-EFFICIENT
EMBEDDED SYSTEMS

System-Level Design
Techniques for Energy-Efficient
Embedded Systems

by

MARCUS T. SCHMITZ
University of Southampton, United Kingdom

BASHIR M. AL-HASHIMI
University of Southampton, United Kingdom

and

PETRU ELES
Linköping University, Sweden

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-48736-5
Print ISBN: 1-4020-7750-5

©2005 Springer Science + Business Media, Inc.

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

Dordrecht

To our beloved families

Contents

List of Figures ix
List of Tables xiii

Preface xv

Acknowledgments xvii

1. INTRODUCTION

1.1

1.2

1.3

1.4

1.5

Embedded System Design Flow

System Specification

Co-Synthesis

Hardware and Software Synthesis

Book Overview

1

2

5

6

2. BACKGROUND

14

17

19

19

24

29

30

33

35

36

44

61

2.1

2.2

2.3

2.4

2.5

Energy Dissipation of Processing Elements

Energy Minimisation Techniques

Energy Dissipation of Communication Links

Further Readings

Concluding Remarks

3.

50

58

POWER VARIATION-DRIVEN DYNAMIC VOLTAGE SCALING

3.1

3.2

3.3

Motivation

Algorithms for Dynamic Voltage Scaling

Experimental Results: Energy-Gradient based Dynamic Voltage
Scaling

3.4 Concluding Remarks

4. OPTIMISATION OF MAPPING AND SCHEDULING FOR
DYNAMIC VOLTAGE SCALING

vii

viii SYSTEM-LEVEL DESIGN TECHNIQUES

4.1

4.2

4.3

4.4

Schedule Optimisation

Optimisation of Task and Communication Mapping

Optimisation of Allocation

Concluding Remarks

62

81

94

97

5. ENERGY-EFFICIENT MULTI-MODE EMBEDDED SYSTEMS

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Preliminaries

Motivational Examples

Previous Work

Problem Formulation

Co-Synthesis of Energy-Efficient Multi-Mode Systems

Experimental Results: Multi-Mode

Concluding Remarks

99

100

104

107

109

111

122

130

6. DYNAMIC VOLTAGE SCALING FOR CONTROL FLOW-
INTENSIVE APPLICATIONS

by Dong Wu, Bashir M. Al-Hashimi, and Petru Eles

133

6.1

6.2

6.3

6.4

6.5

The Conditional Task Graph Model

Schedule Table for CTGs

Dynamic Voltage Scaling for CTGs

Voltage Scaling Technique for CTGs

Conclusions

133

135

136

139

148

7. LOPOCOS: A LOW POWER CO-SYNTHESIS TOOL

7.1

7.2

7.3

Smart Phone Description

LOPOCOS

Concluding Remarks

8. CONCLUSION

8.1

8.2

Summary

Future Directions

151

151

157

172

173

174

177

References
181

Index
193

List of Figures

1.1

1.2

1.3

Example of a typical embedded system (smart-phone)

Typical design flow of a new embedded computing system

MP3 decoder given as (a) task graph specification (17
tasks and 18 communications) and (b) high-level lan-
guage description in C

2

4

7

8

9

1.4

1.5

1.6

1.7

System-level co-synthesis flow

Architectural selection problem

Application mapping onto hardware and software components 10

Two different scheduling variants based on the same
allocated architecture and identical application mapping 12

13

14

15

16

20

22

1.8

1.9

System schedule with idle and slack times

1.10

1.11

The concept of dynamic voltage scaling

Hardware synthesis flow

Software synthesis flow

2.1

2.2

2.3

Dynamic power dissipation of an inverter circuit [37]

Supply voltage dependent circuit delay

Energy versus delay function using fixed and dynamic
supply voltages (considering and 24

25

27

28

2.4

2.5

2.6

2.7

Block diagram of DVS-enabled processor [36]

Shutdown during idle times (DPM)

Voltage scaling to exploit the slack time (DVS)

Combination of dynamic voltage scaling and dynamic
power management

3.1 Architecture and specification for the motivational example

28

37

ix

x SYSTEM-LEVEL DESIGN TECHNIQUES

3.2 Power profile of a possible mapping and schedule at
nominal supply voltage (no DVS is applied) 39

41

45
3.3
3.4

3.5

Two different voltage scaled schedules

Pseudo code of the proposed heuristic (PV-DVS) algorithm

Capturing the mapping and schedule information into
the task graph by using pseudo edges and communica-
tion task

3.6 Pseudo code of task graph to mapped-and-scheduled
task graph transformation

3.7

46

47

Three identical execution orders of the tgff17_m bench-
mark: (a) unscaled execution at nominal supply voltage
(NO-DVS), (b) using the EVEN-DVS, and (c) the PV-
DVS approach

3.8 Energy reduction quality dependent on minimal exten-
sion time

3.9

3.10

4.1

Execution time dependent on minimal extension time

54

56

56

57Energy reduction quality dependent on execution time

Co-synthesis flow for the optimisation of scheduling
and mapping towards the utilisation of PV-DVS

4.2

4.3

4.4

Specification and DVS-enabled architecture

A possible schedule not optimised for DVS
Schedule optimised for DVS considering the power vari-
ation model

62

63

64

4.5

4.6

4.7

4.8

4.9

List scheduling

Task priority encoding into a priority string

Principle behind the genetic list scheduling algorithm

Proposed EE-GLSA approach for energy-efficient schedules

Hole filling problem

65
70

70

71

73

74
4.10 Task mapping string describing the mapping of five

tasks to an architecture 82

4.11 Proposed EE-GTMA approach for energy-efficient task
mappings 83

4.12

4.13

4.14

Combined optimisation of task and communication mapping 85

86A combined priority and communication mapping string

Proposed EE-GLSCMA approach for combined opti-
misation of energy-efficient schedules and communica-
tion mappings

4.15 Three scheduling and mapping concepts

88

90

List of Figures xi

4.16 Nine different implementation possibilities of the OFD
algorithm

5.1
5.2

Example operational mode state machine of a smart phone

Relation between OMSM and individual task graph spec-
ifications

97

101

5.3
5.4

5.5
5.6

5.7

5.8
5.9

Distributed Architectural Model
Mode execution probabilities

Multiple task type implementations

Typical Activation Profile of a Mobile Phone

Task mapping string for multi-mode systems

Pseudo Code: Multi-Mode Co-Synthesis

Pseudo Code: Mapping Modification towards compo-
nent shutdown

102

103

105

107
112

113
114

5.10
5.11

DVS Transformation for HW Cores

DVS Transformation for HW Cores considering inter-
PE communication

117

119

5.12 Pseudo code: Task graph transformation for DVS-enabled
hardware cores

120

121
5.13 Pareto optimal solution space achieved through a single

optimisation run of mul15 (without DVS), revealing the
solution trade-offs between energy dissipation and area usage 125

5.14 A system specification consisting of two operational
modes optimized for three different execution proba-
bilities (solid line–0.1:0.9, dashed–0.9:0.1, dotted–0.5:0.5) 127

5.15 Energy dissipation of the Smart phone using different
optimisation strategies 130

1346.1
6.2

Conditional Task Graph and its Tracks
Schedules of the CTG of Figure 6.1 (a) (in this figure
corresponds to tasks

6.3
6.4

6.5
6.6
6.7
6.8

7.1
7.2

7.3

Schedules scaled for energy minimisation
Improper scaling with violated timing constraint
CTG with one disjunction node
Schedules
Pseudo-code: Voltage scaling approach for CTGs
Actual, scaled schedules

Block diagram of the GSM RPE-LTP transcoder [73]
Task graph of the GSM voice encoder

Task graph of the GSM voice decoder

137
138
138

140
141
142

145
152
154

155

xii SYSTEM-LEVEL DESIGN TECHNIQUES

7.4
7.5
7.6
7.7

7.8
7.9

Block diagram of the MPEG-1 layer 3 audio decoder
Block diagram of the JPEG encoder and decoder [149]
Task graphs of the JPEG encoder and decoder
Design flow used within LOPOCOS
File description of the top-level finite state of the smart phone
File description of a single mode task graph

156
156
157
159
160
162

163
168
169

7.10

7.11
7.12
7.13

Technology library file
Co-synthesis results of Architecture 1
Co-synthesis results of Architectures 2 and 3
Co-synthesis results for Architectures 2 and 3, exploit-
ing DVS

7.14
8.1

Co-synthesis results for Architecture 4
Network-on-Chip

170
171

179

List of Tables

1.1 Trade-offs between serveral heterogeneous components
(+ + highly advantageous, + advantageous, o
moderate, - disadvantageous, - - highly disadvantageous) 9

1.2 Task execution properties (time and power) on different
processing elements 10

3.1

3.2

Nominal task execution times and power dissipations

Communication times and power dissipations of com-
munication activities mapped to the bus

38

38

423.3

3.4

Evolution of the energy-gradients during voltage scaling

Comparison of the presented PV-DVS optimisation with
the fixed power model using EVEN-DVS approach 52

533.5

4.1

PV-DVS results using the benchmarks of Bambha et al. [20]

Nominal execution times and power dissipations for the
mapped tasks 63

4.2 Experimental results obtained using the fixed power
model and the power variation model during voltage
selection; both integrated into a genetic list scheduling
algorithm 77

4.3 Experimental results obtained using the generalised,
DVS optimised scheduling approach for benchmark ex-
ample TG1

4.4 Experimental results obtained using the generalised,
DVS optimised scheduling approach for benchmark ex-
ample TG2

4.5 Mapping optimisation with and without DVS optimised
scheduling using tgff and hou benchmarks

79

80

90

xiii

xiv SYSTEM-LEVEL DESIGN TECHNIQUES

4.6 Mapping optimisation of the benchmark set TG1 using
NO-DVS (Nominal), EVEN-DVS, and PV-DVS 92

4.7 Comparison between DLS algorithm and the proposed
scheduling and mapping approach using Bambha’s bench-
marks [20] 93

4.8 Increasing architectural parallelism to allow voltage scal-
ing of the OFD algorithm 96

4.9
5.1
5.2

5.3
5.4

5.5
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Relaxing the performance constraints of the OFD algorithm
Task execution and implementation properties
Considering mode execution probabilities (excluding DVS)
Considering mode execution probabilities (including DVS)

Smart phone experiments without DVS
Smart phone experiments with DVS

Example Schedule Table for the CTG of Figure 6.1(a)
Schedule Table for the CTG of Figure 6.5
Scaled Schedule Table for the CTG of Figure 6.5
Pre-processed schedule table
Result after processing column true (values are rounded)
Results after processing column A
Final schedule table (scaled)
Results of the real-life example
Results of the generated examples

6.10
7.1
7.2
7.3

Results of the mapping optimisation
Task independent components parameters
Task dependent parameters
Components in a typical technology library

96

105
123
125
128

129
135
140
141
142
144
144

144

146
147
148
164
165
166

Preface

It is likely that the demand for embedded computing systems with low energy
dissipation will continue to increase. This book is concerned with the develop-
ment and validation of techniques that allow an effective automated design of
energy-efficient embedded systems. Special emphasis is placed upon system-
level co-synthesis techniques for systems that contain dynamic voltage scalable
processors which can trade off between performance and power consumption
during run-time.

The first part of the book addresses energy minimisation of distributed em-
bedded systems through dynamic voltage scaling (DVS). A new voltage se-
lection technique for single-mode systems based on a novel energy-gradient
scaling strategy is presented. This technique exploits system idle and slack
time to reduce the power consumption, taking into account the individual task
power dissipation. Numerous benchmark experiments validate the quality of
the proposed technique in terms of energy reduction and computational com-
plexity.

The second part of the book focuses on the development of genetic algorithm-
based co-synthesis techniques (mapping and scheduling) for single-mode sys-
tems that have been specifically developed for an effective utilisation of the
voltage scaling approach introduced in the first part. The schedule optimisation
improves the execution order of system activities not only towards performance,
but also towards a high exploitation of voltage scaling to achieve energy sav-
ings. The mapping optimisation targets the distribution of system activities
across the system components to further improve the utilisation of DVS, while
satisfying hardware area constraints. Extensive experiments including a real-
life optical flow detection algorithm are conducted, and it is shown that the
proposed co-synthesis techniques can lead to high energy savings with moder-
ate computational overhead.

The third part of this book concentrates on energy minimisation of emerg-
ing distributed embedded systems that accommodate several different appli-

xv

xvi SYSTEM-LEVEL DESIGN TECHNIQUES

cations within a single device, i.e., multi-mode embedded systems. A new
co-synthesis technique for multi-mode embedded systems based on a novel
operational-mode-state-machine specification is presented. The technique in-
creases significantly the energy savings by considering the mode execution
probabilities that yields better resource sharing opportunities.

The fourth part of the book addresses dynamic voltage scaling in the con-
text of applications that expose extensive control flow. These applications are
modelled through conditional task graphs that capture control flow as well as
data flow. A quasi static scheduling technique is introduced, which guarantees
the fulfilment of imposed deadlines, while at the same time, reduces the energy
dissipation of the system through dynamic voltage scaling.

The new co-synthesis and voltage scaling techniques have been incorporated
into the prototype co-synthesis tool LOPOCOS (Low Power Co-Synthesis).
The capability of LOPOCOS in efficiently exploring the architectural design
space is demonstrated through a system-level design of a realistic smart phone
example that integrates a GSM cellular phone transcoder, an MP3 decoder, as
well as a JPEG image encoder and decoder.

Acknowledgments

Financial support of the work was provided by the Department of Electronics
and Computer Science at the University of Southampton, the Embedded Sys-
tems Laboratory (ESLAB) at Linköping University, as well as the Engineering
and Physical Sciences Research Council (EPSRC), UK.

Special thanks go to the members of the Electronic Systems Design Group
(ESD) at the University of Southampton, for many fruitful discussions.

We would like to thank Christian Schmitz, who has contributed in deriving the
smart phone benchmark during a visit at the University of Southampton.

We would also like to acknowledge Neal K. Bambha (University of Maryland,
USA) and Flavius Gruian (Lund University, Sweden) for kindly providing their
benchmark sets, which have been used to conduct some of the presented exper-
imental results.

xvii

Chapter 1

INTRODUCTION

Over the last several years‚ the popularity of portable applications has ex-
plosively increased. Millions of people use battery-powered mobile phones‚
digital cameras‚ MP3 players‚ and personal digital assistants (PDAs). To per-
form major pans of the system’s functionality‚ these mass products rely‚ to a
great extent‚ on sophisticated embedded computing systems with high perfor-
mance and low power dissipation. The complexity of such devices‚ caused by
an ever-increasing demand for functionality and feature richness‚ has made the
design of modern embedded systems a time-consuming and error-prone task. To
be commercially successful in a highly competitive market segment with tight
time-to-market and cost constraints‚ computer-based systems in mobile appli-
cations should be cheap and quick to realise‚ while‚ at the same time‚ consume
only a small amount of electrical power‚ in order to extend the battery-lifetime.
Designing such embedded systems is a challenging task.

This book addresses this problem by providing techniques and algorithms for
the automated design of energy-efficient distributed embedded systems which
have the potential to overcome traditional design techniques that neglect im-
portant energy management issues. In this context‚ special attention is drawn
to dynamic voltage scaling (DVS) — an energy management technique. The
main idea behind DVS is to dynamically scale the supply voltage and operational
frequency of digital circuits during run-time‚ in accordance to the temporal per-
formance requirements of the application. Thereby‚ the energy dissipation of
the circuit can be reduced by adjusting the system performance to an appropriate
level. Furthermore‚ the proposed synthesis techniques target the coordinated
design (co-design) of mixed hardware/software applications towards the effec-
tive exploitation of DVS‚ in order to achieve substantial reductions in energy.

The main aims of this chapter are to introduce the fundamental problems
that are involved in designing distributed embedded systems and to provide

1

2 SYSTEM-LEVEL DESIGN TECHNIQUES

the terminology used throughout this work. The remainder of this chapter is
organised as follows. Section 1.1 outlines a typical system-level design process.
A task graph specification model‚ used to capture the system’s functionality‚ is
introduced in Section 1.2. Section 1.3 describes the individual system design
steps using some illustrative examples. Hardware and software synthesis are
briefly discussed in Section 1.4. Finally‚ Section 1.5 gives an overview of the
book contents.

1.1 Embedded System Design Flow
A typical embedded system‚ as it can be found‚ for example‚ in a smart-

phone‚ is shown in Figure 1.1. It consists of heterogeneous components such

Figure 1.1. Example of a typical embedded system (smart-phone)

as software programmable processors (CPUs‚ DSPs) and hardware blocks (FP-
GAs‚ ASICs). These components are interconnected through communication
links and form a distributed architecture‚ such as the one shown in Figure 1.1 (a).
Analogue-to-digital converters (ADC)‚ digital-to-analogue converters (DAC)‚
as well as input/output ports (I/O) allow the interaction with the environment. A
complete embedded system‚ however‚ consists additionally of application soft-
ware (Figure 1.1 (b)) that is executed on the underlying hardware architecture
(Figure 1.1(a)). Clearly‚ effective embedded system design demands optimisa-
tion in both hardware and software parts of the application. When designing
an embedded computing system‚ as part of a new product‚ it is common to go
through several design steps that bring a novel product idea down to its physical
realisation. This is usually referred to as system-level design flow. A possible

Introduction 3

and common design flow is introduced in Figure 1.2. It is characterised by three
important design steps: system specification (Step A)‚ co-synthesis (Step B)‚ as
well as concurrent hardware and software synthesis (Step C). The remainder
of this section briefly outlines this design flow.

Starting from a new product idea‚ the first step towards a final realisation is
system specification. At this stage‚ the functionality of the system is captured
using different conceptual models [61] such as natural language‚ annotated-
graphic representations (finite state machines‚ data-flow graphs)‚ or high-level
languages (VHDL‚ C/C++‚ SystemC). This design step is indicated as Step A
in Figure 1.2. Having specified the system’s functionality‚ the next stage in the
design flow is the co-synthesis‚ shown as Step B in Figure 1.2. The goal of
co-synthesis is threefold:

Architecture allocation: Firstly‚ an adequate target architecture needs to be
allocated‚ i.e.‚ it is necessary to determine the quantity and the types of
different interconnected components that form the distributed embedded
system. Components that can be allocated are given in a predefined tech-
nology library.

Application mapping: Secondly‚ all parts of the system specification have
to be distributed among the allocated components‚ that is‚ tasks (function
fragments) and communications (data transfers between tasks) are uniquely
mapped to processing elements and communication links‚ respectively.

Activity scheduling: Thirdly‚ a correct execution order of tasks and commu-
nications has to be determined‚ i.e.‚ the activities have to be scheduled under
the consideration of interdependencies.

These three co-synthesis stages aim to optimise the design according to objec-
tives set by the designer‚ such as power consumption‚ performance‚ and cost.
In order to reduce the power consumption‚ emerging co-synthesis approaches
(as the one proposed in this work) tightly integrate the consideration of energy
management techniques within the design process [67‚ 76‚ 99‚ 100].

Energy management Energy management techniques utilise existing idle times
to reduce the power consumption by either shutting down the idle compo-
nents or by reducing the performance of the components.

The consideration of energy management techniques during the co-synthesis
allows the optimisation of allocation‚ mapping‚ and scheduling towards their ef-
fective exploitation. After the co-synthesis has allocated an architecture as well
as mapped and scheduled the system activities (tasks and communications)‚ the
next stage in the design flow is the concurrent hardware and software synthesis‚
indicated as Step C in Figure 1.2. These separated design steps transform the
system specification‚ which has been split between hardware and software‚ into

4 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 1.2. Typical design flow of a new embedded computing system

Introduction 5

physical implementations. System parts that are mapped onto customised hard-
ware are designed using high-level [8‚ 19‚ 60‚ 134‚ 154]‚ logic [9‚ 42‚ 110‚ 131]‚
and layout [56] synthesis tools. While system parts that have been mapped onto
software programmable processors (CPUs‚ DSPs) are compiled into assembler
and machine code‚ using either standard or specialised compilers and assem-
blers [1‚ 93]. The main advantage of a concurrent hardware (HW) and software
(SW) synthesis is the possibility to co-simulate both system parts‚ with the aim
of finding errors in the design as early as possible to avoid expensive re-designs.
The following section describes the whole design process shown in Figure 1.2
in more detail and introduces the terminology used throughout this book.

1.2 System Specification (Step A)

The functionality of a system can be captured using a variety of conceptual
specification models [61]. Different modelling styles are‚ for example‚ high-
level languages (hardware description and programming languages) such as
SystemC‚ Verilog HDL‚ VHDL‚ C/C++‚ or JAVA‚ as well as more abstract
models such as block diagrams‚ task graphs‚ finite state machines (FSMs)‚
Petri nets‚ or control/dataflow graphs. Typical applications targeted by the
presented work can be found in the audio and video processing domain (e.g.
multi-media and communication devices with extensive data stream operations).
Such applications fall into the category of data-flow dominated systems. An
appropriate representation for these systems is the task graph model [84‚ 112‚
157]‚ which will be introduced in the following section.

1.2.1 Task Graph Representation

The functionality of a complex system with intensive data stream operations
can be abstracted as a directed‚ acyclic graph (DAG) where the
set of nodes denotes the set of tasks to be executed‚ and the
set of directed edges refers to communications between tasks‚ with
indicating a communication from task to task A task can only start its
execution after all its ingoing communications have finished. Each task can be
annotated with a deadline the time by which its execution has to be finished.
Furthermore‚ the task graph inherits a repetition period which specifies the
maximal delay between to invocations of the source tasks (tasks with no in-
going edges). Structurally‚ task graphs are similar to the data-flow graphs that
are commonly used in high-level synthesis [60‚ 154]. However‚ while nodes in
data-flow graphs represent single operations‚ such as multiplications and addi-
tions‚ the nodes in task graphs are associated with larger (coarse) fragments of
functionality‚ such as whole functions and processes. The concept behind this
model can be exemplified using a simple illustrative example.

6 SYSTEM-LEVEL DESIGN TECHNIQUES

Example 1: For the purpose of this example, consider an MP3 audio de-
coder. In order to reconstruct the “original” stereo audio signal from an encoded
stream, the decoder reads the data stream and applies several transformations
such as Huffman decoding, dequantisation, inverse discrete cosine transforma-
tion (IDCT), and antialiasing. A possible task graph specification along with
a high-level language description in C of such an MP3 decoder is shown in
Figure 1.3. The figure outlines the relation between task graph model and
high-level description. In this particular example the granularity of each task in
the task graph corresponds to a single sub-function of the C specification. For
instance, the Huffman Decoder tasks and in Figure 1.3(a) reflect the
functionality that is performed by the third sub-function in Figure 1.3(b). The
flow of data is expressed by edges between the individual tasks. The output
data produced by the Huffman Decoder tasks, for example, is the input of
the dequant tasks and indicated by the communication edges and

In order to decode the compressed data into a high quality audio signal,
one execution of all tasks in the graph, starting from task and finishing with

has to be performed in at most 25ms as expressed by the task deadline
However, to obtain real-time decompression of a continuous music stream, the
execution of all tasks has to be performed 40 times per second, i.e., with a
repetition rate of Although in this particular example the deadline
and the repetition rate are identical, they might vary in other applications. As
opposed to the C specification, the task graph explicitly exhibits application
parallelism as well as communication between tasks (data flow), while the ex-
act algorithmic implementation of each function is abstracted away.

Task graphs can be derived from given high-level specification either manually
or using extraction tools‚ such as the one proposed in [148].

1.3 Co-Synthesis (Step B)

Once the system’s functionality has been specified as task graph‚ the sys-
tem designers will start with the system-level co-synthesis. This is indicated
as Step B in Figure 1.2. In addition‚ Figure 1.4 shows the co-synthesis flow
in diagrammatic form. Co-synthesis is the process of deriving a mixed hard-
ware/software implementation from an abstract functional specification of an
embedded system. To achieve this goal‚ the co-synthesis needs to address four
fundamental design problems: architecture allocation‚ application mapping‚
activity scheduling‚ and energy management. Figure 1.4 shows the order in
which these problems have to be solved. In general‚ these co-synthesis steps
are iteratively repeated until all design constraints and objectives are satisfied
[52‚ 54‚ 70‚ 156]. An iterative design process has the advantage that valuable
feedback can be provided to the different synthesis steps. This feedback‚ which

Introduction

Figure 1.3. MP3 decoder given as (a) task graph specification (17 tasks and 18 communications)
and (b) high-level language description in C

is indicated by dashed upwards arrows in the figure‚ is used to guide the opti-
misation process towards the satisfaction of design constraints. The following
sections explain the co-synthesis flow shown in Figure 1.4 and the four sub-
problems in more detail.

7

8 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 1.4. System-level co-synthesis flow

1.3.1 Architecture Allocation
One of the first questions that needs answering during the design of a new

embedded system is what system components (processing elements and com-
munication links) should be used in order to implement the desired product
functionality. This part of the co-synthesis is known as architecture alloca-
tion. Generally‚ there are many different target architectures that can be used
to implement the desired functionality. Problematic‚ however‚ is the correct
choice as indicated in Figure 1.5. The overall goal of the co-synthesis process
is to identify the “most” suitable architecture. Certainly‚ the “most” suitable
architecture should provide enough performance for the application in order
to satisfy the timing constraints‚ while‚ at the same time‚ cost‚ design time‚
and energy dissipation should be reduced to a minimum. The importance of
architecture allocation becomes clearer when considering the advantages and
disadvantages associated with processing elements of various kinds. Table 1.1
gives the most relevant component trade-offs. Consider‚ for instance‚ the two
processing elements (PEs): general-purpose processor (GPP) and application
specific integrated circuit (ASIC). While software implementations on off-the-
self GPPs are more flexible and cheaper to realise than hardware designs‚ the

Introduction 9

Figure 1.5. Architectural selection problem

Table 1.1. Trade-offs between serveral heterogeneous components
(+ + highly advantageous‚ + advantageous‚ o moderate‚

disadvantageous‚ - - highly disadvantageous)

ASIC offers higher performance and better energy-efficiency. Similarly‚ the
application specific instruction set processors (ASIPs) and field-programmable
gate arrays (FPGAs) show different trade-offs. Of course‚ the non-recurring
engineering cost (NRE) is mainly important for low volume products. For
high volume applications this cost is amortised and becomes less important.
Certainly‚ selecting the appropriate system components‚ in order to balance be-
tween these trade-offs‚ is of utmost importance for high quality designs. The
intention of system-level co-synthesis tools is to aid the system designer in
effectively exploring the architectural design space‚ in order to find a suitable
target architecture rapidly.

1.3.2 Application Mapping
Following the co-synthesis flow given in Figure 1.4‚ the next step after ar-

chitecture allocation is application mapping. During this step the tasks and
communications of the system specification are mapped onto the allocated pro-
cessing elements (PEs) and communication links (CLs) of the architecture‚
respectively. Figure 1.6 illustrates two different mappings of a system speci-
fication onto identical target architectures. These two mappings differ in the
assignment of task which is either mapped to the ASIC (Mapping 1) or to

-

10 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 1.6. Application mapping onto hardware and software components

CPU2 (Mapping 2). Mapping explicitly determines if a task is implemented in
hardware or software‚ hence‚ the term hardware/software partitioning is often
mentioned in this context. Due to the heterogeneity of processing elements‚
the mapping specifies the execution characteristics of each task and communi-
cation. Consider‚ for example‚ the execution characteristics of the tasks shown
in Table 1.2. This table gives the execution times and power dissipations

Table 1.2. Task execution properties (time and power) on different processing elements

of each task in the specification of Figure 1.6‚ depending on the map-
ping to a 6052 8-bit microprocessor (running at 10 M H z), an ARM7TDMI

Introduction 11

32-bit microprocessor (running at 20MHz)‚ or an ASIC in 0.6µm technology
which offers a usable die size of In addition to the time and power
values‚ the hardware area A required for tasks implemented on the ASIC is
given. In general‚ hardware implementations are more efficient in terms of
performance and power consumption than software realisations. However‚ the
design of hardware is a more time consuming process. Clearly‚ determining a
good mapping solution is of crucial importance for the system design. Inap-
propriately distributing the activities among the components can result in poor
utilisation of the system‚ necessitating the allocation of an architecture with
higher performance‚ hence‚ increasing the system cost.

1.3.3 Activity Scheduling

Moving further in the design flow of Figure 1.4‚ the next step after appli-
cation mapping is activity scheduling. The function of scheduling is to order
the execution of tasks and communications (both activities) such that timing
constraints are satisfied. This is not a trivial problem‚ since several activities
mapped onto the same component cause congestion‚ which‚ in turn‚ hampers
the effective exploitation of parallelism in the application. Hence‚ a good sched-
ule should allow to exploit this parallelism effectively in order to improve the
system performance.

Given an allocated architecture and a mapping of tasks and communication
as well as a task graph specification‚ Figure 1.7 depicts two possible schedule
solutions (Schedule 1 and Schedule 2). According to the system specification‚
the execution of the tasks and must be finished before deadline is ex-
ceeded. Thus‚ if the deadlines are violated the schedule is invalid. Consider
the following scheduling scenarios given in Schedule 1 and Schedule 2 of Fig-
ure 1.7. After the initial task has finished its execution‚ the communications

and become ready. However‚ since both communications need to share
the same bus it is necessary to sequence the transfers‚ since only one transfer
is possible at a given time. Thus‚ a scheduling decision has to be taken at this
point. The first schedule shown in Figure 1.7 corresponds to a schedule in
which communication takes place before communication As it can
be observed from this schedule‚ the executions of tasks and finish before
deadline hence‚ this solution represents a valid schedule On the
other hand‚ if communication is scheduled before communication as
shown in Schedule 2‚ the execution of task is delayed‚ which further delays
task and communication Ultimately‚ the execution of task starts
too late to finish the execution before deadline Thus‚ the second schedule
represents an invalid solution

12 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 1.7. Two different scheduling variants based on the same allocated architecture and
identical application mapping

1.3.4 Energy Management
Having allocated an architecture as well as having mapped and scheduled

the application onto it‚ the next step within the co-synthesis flow of Figure 1.4
is the utilisation of energy management techniques. This step is necessary to
accurately estimate the energy requirements of the system‚ which is used to
guide the optimisation of allocation‚ mapping‚ and scheduling towards energy-

Introduction 13

Figure 1.8. System schedule with idle and slack times

efficient designs. In general‚ energy management techniques exploit idle times
and slack times within the system schedule by shutting down processing el-
ements (PEs) [26‚ 97] or by reducing the performance of individual PEs [36‚
152]. Idle times and slack times are defined as follows:

Idle times refer to periods in the schedule when PEs and CLs do not experi-
ence any workload‚ i.e.‚ during these intervals the components are redundant
(see Figure 1.8).

Slack times is the difference between task deadline and task finishing time
of sink tasks (tasks with no outgoing edges)‚ i.e.‚ slack times are a result of
over-performance (see Figure 1.8). Clearly‚ slack time is a special case of
idle time.

Two important energy management techniques are dynamic power manage-
ment (DPM) [26‚ 79‚ 97‚ 140] and dynamic voltage scaling (DVS) [36‚ 76‚ 80‚
152]. DPM puts processing elements and communication links (both compo-
nents) into standby or sleeping modes whenever they are idle. Nevertheless‚
the reactivation of components takes finite time and energy; hence‚ components
should only be switched off or set into a standby mode if the idle periods are long
enough to avoid deadline violations or increased power consumptions [26‚ 98].
DVS‚ on the other hand‚ exploits slack time by reducing simultaneously clock
frequency and supply voltage of PEs. Thereby‚ DVS adapts the component
performance to the actual requirement of the system. In this way‚ substantial
savings are achieved since the energy consumption of the system components
is proportional to the square of the supply voltage [38]. The basic
concept behind DVS is demonstrated in Figure 1.9. It can be observed from
Figure 1.9(a) that tasks r and – finish execution before deadline As in-
dicated in the figure‚ this results in slack time. Instead of switching-off the
components during these times (as done by DPM)‚ it is possible to prolong the
execution of all six tasks. This is achieved by scaling down the supply voltage
and frequency of the processing elements until the tasks and just finish on
time (as shown in Figure 1.9(b)). The main problem that needs to be addressed

14 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 1.9. The concept of dynamic voltage scaling

here is how to distribute the available slack time among the tasks‚ in order to
achieve the “highest” possible energy savings.

Nevertheless‚ the effectiveness with which DPM and DVS can be applied
depends significantly on the available idle and slack times. A worthwhile opti-
misation of allocation‚ mapping‚ and scheduling must take the optimisation of
idle and slack time into account‚ in order to allow a most effective exploitation
of both techniques [68‚ 76‚ 98‚ 99]. In general‚ such an optimisation requires the
iterative execution of the co-synthesis steps (allocation‚ mapping‚ scheduling)‚
until the “most” suitable implementation of the system has been found [67‚ 99].

1.4 Hardware and Software Synthesis (Step C)
The previous section has outlined the system-level co-synthesis (Step B in

Figure 1.2)‚ which transforms an abstract specification into an architectural de-
scription of a mixed hardware/software system. The final step in the embedded
system design flow is the concurrent hardware and software synthesis (Step C
in Figure 1.2). This step brings the mixed hardware/software description of
the system down to a physical implementation‚ i.e.‚ the specification fragments
(tasks) that have been distributed among the hardware and software components
of the system need to be realised. This is achieved through two separate‚ yet
concurrent synthesis steps: hardware synthesis and software synthesis. One
of the main advantages of concurrent HW/SW design is the ability to check
the correctness of the overall system by means of simulation‚ i.e.‚ the interac-
tion between hardware and software can be co-simulated [129]. Note‚ whereas
system-level co-synthesis targets the design of interacting components‚ the main
aim of hardware and software synthesis is the design of the individual hardware
components and the software tasks running on programmable processors.

Hardware Synthesis: The design of complex hardware components is based
on existing very large scale integration (VLSI) synthesis tools [8‚ 9‚ 43‚ 134‚

Introduction 15

Figure 1.10. Hardware synthesis flow

154‚ 155]. Figure 1.10 illustrates a possible hardware synthesis process that
consists of three subsequent design steps.

A high-level synthesis tool (or behavioural synthesis tool) [8‚ 134‚ 154] trans-
forms a behavioural specification into a structural description at the register-
transfer level (RTL). Here the individual components are represented by data
paths which execute arithmetic operations under control of a control unit.

The RTL description (e.g. in structural VHDL) is then translated into a gate-
level representation using a logic synthesis tool [9‚ 10]. In this stage of the
design‚ the control unit as well as the data path are structurally represented
as netlists of logic gates.

(a)

(b)

16 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 1.11. Software synthesis flow

The final layout mask (used for IC fabrication) is generated from the gate-
level description through a layout synthesis tool [56]. Here the individual
physical gates are placed and interconnections are routed.

(c)

It should be noted that power reduction can be addressed at all three synthesis
stages (high-level: e.g. clock-gating [29‚ 155]‚ gate-level: e.g. logic optimisa-
tion [45‚ 107]‚ mask-level: e.g. technology choice [37‚ 45]). However‚ indepen-
dent of these low-level power reduction techniques‚ the previously discussed
energy management techniques (DPM and DVS) can be applied at a higher
level of abstraction (system-level) to further improve the savings in energy. In
general‚ the higher the level of abstraction at which the energy minimisation is
addressed‚ the higher are the achievable energy saving [123].

Software Synthesis: Similarly to the hardware synthesis‚ all tasks that have
been mapped to software programmable components have to be transformed
from a high-level description (e.g. C/C++‚ JAVA‚ SystemC) into low-level
machine code. A software translation hierarchy is shown in Figure 1.11 and
consists of two steps:

The initial specification in a high-level language is compiled into assembly
code. This is carried out either using standard compilers‚ such as GCC [1‚
2]‚ or using specialised compilers that are optimised towards specific pro-
cessor types (e.g. DSPs) [93]. The goal of the optimisation is the effective

(a)

Introduction 17

assignment of variables to registers such that operations can be performed
without “time consuming” memory accesses.

Once an optimised assembly code has been generated‚ the low-level code
generation is carried out by processor specific assemblers that translate the
assembler code into executable machine code.

(b)

There exist also techniques for compiler-based power minimisation such as
instruction reordering and reduction of memory accesses [94‚ 145‚ 146]. Fur-
ther‚ sizeable power saving can be obtained through a careful algorithmic design
at the source code level [139]. Clearly‚ such software power minimisation ap-
proaches and system-level energy management techniques do not exclude each
other. In fact‚ for a most energy-efficient system design both techniques should
be considered.

1.5 Book Overview
This work presents novel techniques and algorithms for the automated de-

sign of energy-efficient distributed embedded system. In particular‚ the energy
reduction capabilities of dynamic voltage scaling (DVS) are investigated and
analysed in the context of highly programmable embedded systems with strict
performance and cost requirements. The remainder of this book is organised
as follows. Chapter 2 provides a survey of the most relevant and related works
and outlines the necessary background information that is helpful for the un-
derstanding of the discussed subject.

Chapter 3 introduces a technique for dynamic voltage scaling in distributed
architectures that effectively reduces the energy dissipation of the embedded
system. This technique addresses the energy management problem discussed
in Section 1.3. The proposed approach considers the power variations inherent
to the execution of different tasks‚ in order to increase the efficiency with which
DVS can be applied.

Based on this DVS technique‚ Chapter 4 introduces a new co-synthesis
approach for distributed embedded system that potentially contain voltage-
scalable components. Application mapping and activity scheduling are opti-
mised towards the effective utilisation of DVS‚ i.e.‚ towards energy reduction.
This optimisation simultaneously aims at the identification of solution candi-
dates that fulfil the imposed timing constraint and reduced the system cost.

Chapter 5 further extends the proposed co-synthesis approach towards the
design of multi-mode embedded systems which integrate several different ap-
plications into a single device. The introduced multi-mode co-synthesis aims
at energy-efficiency as well as cost effective utilisation of the hardware com-
ponents. It is demonstrated that substantial energy savings can be achieved
without modification of the underlying hardware architecture‚ even when ne-
glecting DVS.

18 SYSTEM-LEVEL DESIGN TECHNIQUES

Many real-world applications exhibit control-intensive behaviour on top of
the transformational data flow. Such systems can be modelled through con-
ditional task graphs. A dynamic voltage scaling and scheduling technique for
such application types is introduced in Chapter 6.

The techniques introduced in the preceding chapters and their algorithmic
implementations have been combined into a new prototype co-synthesis tool for
energy-efficient embedded systems. This tool is introduced in Chapter 7 and
its usage is demonstrated using a real-life smart-phone that merges a cellular
GSM phone‚ a digital camera‚ and an MP3-player into one device. Chapter 8
concludes the presented work and outlines potential areas of future research.

Chapter 2

BACKGROUND

Reducing power consumption has emerged as a primary design goal, in par-
ticular for battery-powered embedded systems. Low power design techniques
for digital components have been intensively investigated over the last decade
[28, 108, 116, 122, 147, 155]. These techniques focus mainly on the optimisa-
tion of a single hardware component in isolation. However, embedded systems
are often far more complex than single components — they consist of several
interacting heterogeneous components. Here the interrelation between the dif-
ferent processors and hardware blocks should be carefully considered during
the synthesis in order to achieve an energy-efficient design. Two techniques
that can be used for energy minimisation of distributed embedded systems are:
dynamic power management (DPM) [23] and dynamic voltage scaling (DVS)
[80, 152]. These system-level energy management techniques achieve energy
reductions by selectively switching off unused components (DPM) or by scal-
ing down the performance of individual components in accordance to temporal
performance requirements of the application (DVS).

The aim of this chapter is to introduce the sources of power dissipation
within distributed embedded systems and to outline how energy management
techniques can be applied to reduce the dissipated energy (Section 2.1–2.3).
Furthermore, an overview of the most relevant previous work is given, differen-
tiating between general co-synthesis approaches without energy minimisation
and co-synthesis approaches with energy minimisation (Section 2.4).

2.1 Energy Dissipation of Processing Elements

The power dissipated by computational components (CPUs, ASIPs,
FPGAs, ASICs) of an embedded system, i.e. processing elements, is caused by
two distinctive effects. First, static currents that occur whenever the processing

19

20 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 2.1. Dynamic power dissipation of an inverter circuit [37]

element is switched on, even when no computations are carried out on this unit.
Second, active computations cause switching activity within the circuitry that
results in dynamic power dissipation whenever computations are performed.
Accordingly to both sources the total power dissipation of processing elements
is given by:

Both static and dynamic power dissipations can be further subdivided into two
power components, each [37]:

The static power has two parts: leakage power and bias power
While the dynamic power consists of short-circuit power

and switching power Out of these four source of power dissipation, switch-
ing power is currently the dominant one which accounts for approximately
90% of the total PE power consumption [38]. Accordingly, the following dis-
cussion concentrates on this portion of the total power dissipation, simply re-
ferred to as power or dynamic power. It should be noted, however, that with
shrinking feature size (< 0.07µm) and reduced threshold voltage levels, the
leakage currents become additionally an important issue [31,37,130].

Switching power is dissipated due to the charging and discharging of
the effective circuit load capacitance (parasitic capacitors of the circuit
gates). To clarify the source of switching power consider the simple gate-
level circuit shown in Figure 2.1 (a) and in particular the inverter gate shown
in Figure 2.1(b). This inverter undergoes the following transitions. First, the

Background 21

input signal y is set to high (1), i.e., Tr1 is open (not conducting) while Tr2 is
conducting. Accordingly, the circuit load capacitance is discharged since
Tr2 pulls the capacitance to ground. The load capacitance represents the
intrinsic capacitance of the inputs v and w of the AND and NOR gates. Now
consider a transition from high (1) to low (0) at the input of the inverter y. In
this case the transistor Tr2 is open and Tr1 connects the capacitance to the
supply voltage source, charging via The power dissipated by this
transition is given by:

where the dynamic current changes according the dynamic voltage on the
output:

Therefore, energy is transferred from the power supply to the load capacitance
However, it can be observed that a transition from low to high at the input

does not draw any current from the source, but instead discharges the load
capacitance via Tr2. This indicates that power, from the battery point of
view, is only dissipated during output transitions from 0 to 1, i.e., when the load
capacitance is charged. According to the above given observation, the energy
consumption of the circuit is solely caused by transitions from low to high at
the output of the gate. The dissipated switching energy 1 of one clock cycle,
which takes a time of T, can be calculated as [37]:

where the time (period of on clock cycle) depends on the operational
frequency at which the circuit is clocked.

Although the above considerations were restricted to a single inverter gate,
the same observations hold for more complex circuits, such as microprocessors
[36]. As a result, the total energy drawn from the batteries by a PE
performing a computational task depends additionally on the number of clock
cycles needed to execute this task and the switching activity Therefore,
the total energy is given by:

Dividing Equation (2.6) by the execution time of the task the well
known equation for power dissipation due to switching can be derived [37]:

22 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 2.2. Supply voltage dependent circuit delay

Considering Equations (2.6) and (2.7) leads to very interesting conclusions. If
we assume that the load capacitance is a constant given by the complexity
of the design and the circuit technology, and further the switching activity is a
constant depending on the computational task then:

Although decreasing the operational frequency leads to a reduction in power
dissipation (Equation (2.7)), it does not reduce the energy dissipation (Equa-
tion (2.6)), which is important for battery-lifetime. A simple example can be
used to illustrate this. Consider a computation that requires 10ms on a PE
running at 10MHz and dissipating 200mW. This computation requires an
energy of 200mW · 10ms = 2mJ. If the operational frequency is reduced
from 10MHz to 5MHz, the power consumption of the processor decreases to
100mW, according to Equation (2.7). Nevertheless, the frequency reduction
increases the computational time from 10ms to 20ms. Therefore, the dissi-
pated energy remains unchanged 100mW · 20ms = 2mJ. Hence, the only
possibility to reduce the energy consumption is to reduce the circuit supply
voltage Of course, reducing the supply voltage necessitates the reduction
of the frequency in order to ensure correct operation, as it will be shown in the
following.

When reducing the supply voltage of a digital circuit, the time required for
gate signals to settle is prolonged, which, in turn, increases the circuit delay [37].
The source of this increased circuit delay is simplified shown in Figure 2.2. The
two sub-figures show the gate output voltage over time during a transition
from low to high. While the Figure 2.2(a) corresponds to a transition at maximal
supply voltage, Figure 2.2(b) shows a transition at reduced voltage. Subsequent
gates recognise the signal as high as soon as the output voltage exceeds
the threshold voltage It can be seen that the reduction of the supply voltage

leads to longer charging times until the threshold is reached (compare
with).

Background 23

The circuit delay which is inverse proportional to the operational frequency
at which the component is clocked, can be approximated (error < 10%) as

[34, 37]:

with the technology dependent constant which is given by:

where the constants W, and denote width of the sub-micron CMOS
device, velocity saturation, and gate capacitance, respectively, which limit the
charging current of load capacitance Based on the energy equation (2.6)
and the circuit delay equation (2.8), the normalised energy/delay trade-off can
be derived as:

where and denote the nominal values of energy dissipation and
supply voltage, respectively. The normalised delay is
represented by the circuit delay at the scaled voltage over the minimal
circuit delay at nominal voltage While the constant is given by:

Please note that Equation (2.10) differs from the energy/performance trade-off
equation given in [71]. The reason for this can be found in the fact that the con-
sidered PEs employ lower level power reduction techniques, e.g., gated clocks
that avoid switching in unused circuit parts. Based on Equation (2.10), the
energy-delay trade-off curve given in Figure 2.3 shows the normalised energy
dissipation dependent on the normalised circuit delay for two cases: (a) keeping
the supply voltage fixed and (b) dynamically adjusting the supply voltage. For
instance, executing a task at 10MHz instead of 30MHz reduces the energy
dissipation to approximately 33% of the nominal value when the supply voltage
is lowered accordingly. On the other hand, if the supply voltage is kept fixed, the
energy dissipation remains constant at the nominal value (see Equation (2.6)).

Although the above discussion is mainly concerned with the reduction of the
dynamic power consumption, reducing the supply voltage also reduces the
leakage power consumption, which is given by [102]:

24 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 2.3. Energy versus delay function using fixed and dynamic supply voltages (considering
and

where is the body bias voltage and represents the body junction leakage
current. The parameters and denote circuit technology dependent
fitting constants. As we can observe, the leakage power depends linearly
as well as exponentially on the supply voltage Hence, reducing the supply
voltage decreases the power consumption. Nevertheless, since constant is in
general smaller than reducing the body bias voltage is more effective in
limiting the leakage currents. Please note that the threshold voltage depends
on the body bias voltage, given as:

where and are constants for a given technology. Hence, scaling
to reduce leakage will increase the circuit delay which is equivalent to a

reduced performance as given in Equation (2.8). Interesting works on leakage
power reduction can be found, for example, in [17, 86, 102].

2.2 Energy Minimisation Techniques
Having introduced the fundamentals of power dissipation in digital circuity,

this section outlines two energy reduction techniques that have received con-
siderable attention from academia and industry: dynamic voltage scaling and
dynamic power management.

Background 25

Figure 2.4. Block diagram of DVS-enabled processor [36]

2.2.1 Dynamic Voltage Scaling
A relatively new energy minimisation technique, which leverages the energy-

delay trade-off described above (Section 2.1), is dynamic voltage scaling (DVS)
[80, 152, 161]. DVS-enabled processors have the ability to dynamically change
their supply voltage and operational frequency settings during run-time of the
application. Hence, temporal performance requirements of applications can ex-
ploit the energy/delay trade-off to reduce energy dissipation. Figure 2.4 shows
a block diagram of a typical DVS-enabled processor [36]. A microprocessor
core carries out the required computations. This processing unit is connected
through a system bus to the static memory (cache unit) and the I/O bus in-
terface. The heart of this system, which enables a dynamic voltage selection,
consists of a DC/DC voltage converter, a specialised frequency register, and a
voltage controlled oscillator (VCO). Supply voltage and operational frequency
are changed by writing the desired frequency into the frequency register, i.e.,
these changes are carried out under software control. Upon writing the desired
frequency into the register, the DC/DC converter compares this frequency with
the current frequency (which clocks the microprocessor core, cache, and
I/O interface) and either increases or decreases the supply voltage Ac-
cording to the changed voltage, the VCO adapts the system clock to a higher
or lower frequency Certainly, the whole voltage scaling process requires a
finite time. Typical transition times are in the range of tenths of microseconds.
For instance, the prototype processor introduced in [36] is able to switch from

26 SYSTEM-LEVEL DESIGN TECHNIQUES

5MHz (1.2V) to 80MHz (3.8V), which represents a transition over the full
voltage range, in around 70µs. Nevertheless, the execution of instructions can
be seamlessly continued during this transition. It should be noted that supply
voltage scaling reduces the dynamic power consumption as well as the leak-
age power consumption. In this book, however, we will mainly investigate the
influence on the dynamic power.

Various chip makers have recently introduced processors with DVS capabil-
ity. For example, Transmeta introduced the Crusoe processor in 2000. This pro-
cessor uses a DVS technique called LongRun, which enables the TM5600 model
to run between 300MHz (1.2V) and 667MHz (1.6V). In parallel with Trans-
meta, AMD introduced their implementation of the variable voltage processor
with PowerNow!, the Athlon 4 [14]. The latest version can run at five different
voltage (1.2V–1.4V) and frequency settings Intel has
introduced the XScale processor in 2001 [13]. This processor type is based on a
StrongARM core and offers 16 different operational frequencies. According to
the application specific standard product, the possible voltages/frequency set-
tings vary. Only recently, Intel released the PXA800F processor [15] particular
suitable for cellular phones. Based on an ARM core with XScale, this proces-
sor has the ability run at 104MHz and 312MHz. The increasing availability
of DVS processors adds credibility to the practicability of the DVS technique.
Certainly, DVS is becoming an important energy reduction technique.

2.2.2 Dynamic Power Management

Unlike DVS, dynamic power management (DPM) is already around for quite
a while. The main strategy of DPM is the shutdown of idle system components
[26, 97]. An advantage of DPM is its generality [23], which allows its usage
not only for digital circuitry, but also for other system components such as
displays, hard drives, and analogue circuits. DPM approaches often differ in
the employed shutdown policies (or power management policies). For exam-
ple, in its most aggressive strategy components are switched off immediately
when they become idle. A second strategy is the timeout-based policy, which
switches off components after a fixed idle interval. This policy is well known
from the advanced power management (APM) widely used in today’s note-
book computers. Nevertheless, since the restart of a component involves a time
and power overhead to restore its fully functional state, such greedy policies
might not result in power savings or may even increase the dissipated power
[24]. Therefore, a careful consideration of the applied policies is necessary
to achieve the highest possible power savings [23–25, 97]. The problem with
most real-life systems is the uncertainty with which future events occur. The
quality of a power management policy depends therefore on the accuracy with
which the future behaviour of the system can be predicted, in order to start-up

Background 27

currently inactive components or to shut down currently active components at
the right moment.

2.2.3 Dynamic Power Management versus Dynamic
Voltage Scaling

DVS and DPM are both useful techniques that help to reduce the energy
dissipation of an embedded system. However, one valid question, which has
not been discussed so far, is: “Why should one use a rather complex tech-
nique like DVS to slow down processing elements if it is possible to switch
off components during idle intervals?” This question can be illustratively an-
swered using a simple example. For clarity reasons, the timing overheads for
voltage scaling and power management are neglected here. Consider the fol-
lowing situation. A processing element (processor) performs a certain task
in 20ms and dissipates a power of 500mW when running with 33MHz at
a nominal supply voltage of 3.3V and a threshold voltage of 0.8V. To meet
the performance requirements of the application, the task needs to be repeated
every 30ms. Thus, between each consecutive execution of the task there are
10ms of idleness during which the processor can be deactivated (DPM). Under
these circumstances the execution of task results in an energy consumption
of 500mW · 20ms = 10mJ. Figure 2.5 illustrates this situation.

Figure 2.5. Shutdown during idle times (DPM)

Now consider the execution using voltage scaling. The repetition time of
30ms allow to prolong the execution time of task from 20ms to 30ms. That
is, instead of shutting down the processor during the 10ms of idleness, the pro-
cessor’s performance is reduced from 33MHz to 22MHz, since 30ms/20ms =
1.5 and 33MHz/1.5 = 22MHz. The lower frequency allows the reduction of
the supply voltage from 3.3V to 2.61V, according to Figure 2.3 and the tolerable
increase in circuit delay of 33MHz/22MHz = 1.5. Based on Equation (2.8),
the exact voltage can be obtained by considering the ratio between the delays
at 33MHz and 22MHz. At this voltage and frequency values the processing
element dissipates a power of 209.8mW (see Figure 2.6). Similar to the volt-

28 SYSTEM-LEVEL DESIGN TECHNIQUES

age calculation, the exact value can be obtained from Equation (2.7), using the
power ratio between the operation at 33MHz and 2 2 M H z . Thus, the energy

Figure 2.6. Voltage scaling to exploit the slack time (DVS)

consumption is given by 209.8mW · 30ms = 6.29mJ, a reduction of 32.1%
compared to the 10mJ dissipated when using DPM. This simple example has
shown that the energy efficiency of DVS is superior when compared to DPM.
In fact, DVS always performs better than DPM, whenever both techniques are
applicable [76].

2.2.4 DVS and DPM in Distributed Embedded Systems
Applying DVS and DPM to distributed embedded systems requires the care-

ful consideration of interacting tasks, i.e., applying changes on one processor
might influence the execution of tasks on different processors. Consider the
schedule shown in Figure 2.7, which was already introduced in Chapter 1 (Fig-
ure 1.9, Page 14). For instance, by slowing down CPU 2 during the execution

Figure 2.7. Combination of dynamic voltage scaling and dynamic power management

of task the communications and are delayed, due to dependencies.
This delay further influences the earliest possible start times of the tasks and

These interdependencies further complicate the voltage scaling processes

Background 29

[20, 68, 99, 133], compared to single processor systems. Another observation
which can be made from Figure 2.7(b) is that even after applying DVS to ex-
ploit the available slack there remain some idle periods in the system schedule.
Clearly, further lowering the voltage and frequency would result in missed
deadlines i.e., infeasible solutions. However, it is possible to switch off
idle components during idle times, without influencing the schedule. In order
to achieve a high degree of reduction, dynamic voltage scaling and dynamic
power management should be considered together. However, due to the higher
efficiency of DVS, DPM should be applied after DVS.

For DVS and DPM to be useful it is obligatory that the system experiences
idle times (times where a certain components do not carry out an useful task)
and slack times (times where a reduced system performance can be tolerated).
Such idle and slack times can be found in distributed embedded systems due to
four main reasons:

It is often the case for a given application to show various degrees of paral-
lelism, i.e., not all PEs will be utilised constantly during run-time. See, for
instance, the schedule in Figure 2.7(a).

The performance of the allocated architecture cannot be adapted perfectly
to the application needs, since the allocation of “performance” is not given
as a continuous range, but is rather quantised.

The allocated architecture is commonly over-designed to allow an incremen-
tal design process, i.e., designers try to decrease development time through
the reuse of the hardware architectures over several product generations.
This is only possible by leaving enough “performance headroom” for future
applications [120].

Schedules for hard real-time systems are constructed by considering worst-
case execution times (WCETs), however, actual execution times of tasks
during operation are, for most of their activations, smaller than their WCETs
[137].

(a)

(b)

(c)

(d)

2.3 Energy Dissipation of Communication Links
The preceding sections mainly concentrated on the power consumption of

processing elements and suitable energy management techniques. However, in
distributed heterogeneous system with interacting components, the transfer of
data between processing elements additionally contributes to the overall energy
consumption. Fast communication is essential to avoid undesired contention
of processing elements. Therefore, wide system buses (8 to 128 bit) and high-
speed serial buses (CAN bus, bus, USB, Gigabit Ethernet, Firewire, etc.)
have become commonplace. With each transfer of data over the communication
links (CLs), the line capacitance is charged and discharged, drawing a current

30 SYSTEM-LEVEL DESIGN TECHNIQUES

from the I/O pins of the processing elements. The power dissipated by these
currents is given by:

where is the effectively switched load capacitance of the bus lines,
is the operational voltage of the bus, and is the operational frequency

at which bits are transfered over the bus. Important for the battery-lifetime,
however, is the drawn energy:

where denotes the number of bus cycles needed by communication One
possibility to reduce this energy dissipation is to encode the data before trans-
ferring it. Such bus-encoding techniques have been investigated with the aim of
reducing the switching activity [22, 114, 141]. Unlike the supply voltage of
processing elements, the transmission voltage cannot be reduced easily due
to reliability issues, that is, environmental noise potentially corrupts data during
transfers at low voltages. Nevertheless, many communication interfaces allow
operation at different communication speeds (Ethernet at 10Mb/s, 100Mb/s,
and 1Gb/s). In [96], Liu et al. present a technique that appropriately selects
the speed of processors as well as communication links, in order to reduced
the overall energy consumption. Furthermore, DPM can be equally applied to
CLs as to PEs, i.e., during intervals where no data is transfered the CLs can be
switched off.

2.4 Further Readings
This section briefly reviews the most relevant works in the area of co-

synthesis for embedded systems, distinguishing between co-synthesis approaches
that neglect issues related to power and more recent co-synthesis approaches
that aim at the reduction of power consumption. Due to the topic of this book,
special emphasis is placed upon the latter. Accordingly, this section gives the
interested reader some starting points for further readings.

2.4.1 Co-Synthesis without Energy Minimisation
Hardware/software co-synthesis is a field of active research since the early

90’s and several enlightening surveys have been published ever since [55, 104,
105, 142, 156]. Initially, most co-synthesis approaches targeted an architecture
consisting of a single general-purpose processor connected to one or a few
ASICs. Therefore, the main goal was to split the application between slow-
but-cheap software and fast-but-expensive hardware, to achieve the highest
possible performance without exceeding a given cost constraint [52, 53, 69, 89,
132,153]. In these approaches special attention is given to different heuristic
algorithms that solve the computational expensive partitioning problem, while

Background 31

issues related to power consumption are neglected. Ernst et al. [53] presented
a simulated annealing based partitioning which starts from an all-in-software
solution. Nodes are moved towards hardware until a given timing constraint
is satisfied. Gupta and DeMicheli [69, 70] proposed a heuristic that iteratively
moves nodes from hardware to software to reduce cost without the violation of
imposed timing constraints. Kalavade and Lee [83] introduced a technique that
utilises a global-criticality/local-phase measure to partition the system via a list
scheduling approach [16]. Eles et al. [52] investigated a tabu-search partition-
ing algorithm, and a comparison to simulated annealing is provided. A genetic
algorithm for hardware/software partitioning was developed in [132]. A com-
parison between simulated annealing, tabu-search, and genetic algorithm for
one-CPU-one-ASIC architectures can be found in [153]. Other techniques that
have been investigated include branch-and-bound algorithms [40] and dynamic
programming [89].

More recent co-synthesis approaches target distributed heterogeneous archi-
tectures, i.e., architectures which potentially contain several processing ele-
ments and communication links of different types. The first work in this area
was done by Prakash and Parker [121]. They formulated and solved the problem
using mixed integer linear programming. In a similar vein, Bender [21] applied
mixed integer linear programming. In [157], Wolf developed a greedy heuristic
which initially allocates a processing element for each task. Lightly loaded
PEs are removed iteratively by re-assigning task to other components. Teich
et al. [143] applied an evolutionary approach to the system-level co-synthesis
problem using a graph-based mapping model. Oh and Ha [112] introduced
a co-synthesis framework based on heterogeneous multiprocessor scheduling
[111]. Pop et al. [119, 120] addressed co-synthesis problems that are typical
to time-triggered communication protocols and incremental design processes.
Madsen and Bjørn-Jørgensen [101] investigated the co-design of embedded
systems under memory constraints.

2.4.2 Co-Synthesis with Energy Minimisation
All the approaches introduced in the previous section greatly neglect the

optimisation of energy consumption. However, the recent development of the
portable-application market has intensified the interest in system-level design
techniques for energy-efficient embedded systems. The first approach that
targeted the reduction of power dissipation throughout the co-synthesis pro-
cess was proposed by Dave et al. [41]. They developed a constructive al-
gorithm based on energy levels, which makes the mapping of tasks energy
sensitive. Dick and Jha [49] reported a multi-objective genetic algorithm based
co-synthesis approach. This framework simultaneously optimises the embed-
ded system for cost, power consumption, and timing behaviour. An excellent
overview of scheduling and synthesis techniques for low power can be in [82].

32 SYSTEM-LEVEL DESIGN TECHNIQUES

Most recently, co-synthesis approaches started to integrate the considera-
tion of energy management techniques. This allows to optimise the embedded
system towards the effective utilisation of DPM and DVS, hence, the reduc-
tion of energy consumption. In [74], Henkel introduces a low-power hard-
ware/software partitioning approach for core-based systems. To avoid unnec-
essary high switching activity, the application is carefully partitioned into cores
that can be selectively switched off. This technique is particularly suitable
for designs in which no clock gating is applied. Lu et al. [98] presented a
greedy on-line scheduling technique that optimises the execution order of tasks
towards the utilisation of DPM. The main idea is to cluster the execution of
tasks instead of scattering them, so that high shutdown overheads in terms of
power and time can be avoided. Similarly, Brown et al. [33] developed a buffer
insertion and scheduling technique for distributed systems that allows to re-
duce the shutdown overheads to improve the utilisation of DPM. In [76], Hong
et al. introduced a design methodology for low power core-based real-time
systems-on-a-chip. A variable voltage scheduling technique for single proces-
sor systems was proposed. Luo and Jha [99] developed a combined scheduling
technique for periodic executing tasks with dependencies as well as aperiodic
tasks. Dynamic voltage scaling is considered in this scheduling context. De-
pendent tasks are scheduled statically. The schedulability of aperiodic tasks as
well as the utilisation of DVS are improved by distributing available slack time
evenly among the processing elements of a distributed architecture. The on-
line scheduler serves the aperiodic tasks and considers resource reclaiming. The
same authors further enhanced their approach towards a battery-aware schedul-
ing with the aim to improve the battery discharge profile [100]. This technique
is based on the fact that a flattening out the discharge curve it is possible to pro-
long battery-lifetime [92, 115, 124]. Gruian and Kuchcinski [67, 68] extended
a dynamic list scheduling heuristic to support DVS by making the priority func-
tion energy aware. In each scheduling step the energy-sensitive task priorities
are re-calculated. If a scheduling attempt fails (exceeded hard deadline), the
priority function is adjusted and the application is re-scheduled. Bambha et al.
[20] presented a hybrid search strategy based on simulated heating, in order to
derive an energy-efficient voltage selection for individual tasks. Mapping and
scheduling are based on a dynamic list scheduling approach [138]. Recently,
an integer programming (IP) was proposed by Zhang et al. , which can been
shown to solve the voltage scaling problem optimally in pseudo-polynomial
time [163], under the assumption that continuous voltage-scalable processors
are given. The work introduced by Andrei et al. [17] proposes a non-linear
programming solution for the continuous voltage scaling problem under con-
sideration of scaling overheads in terms of energy and time. Furthermore, the
discrete voltage scaling problem is demonstrated to be NP-hard (with and with-

Background 33

out the consideration of scaling overheads), and the an integer programming
solution is introduced to solve the problem including the scaling overheads.

Many DVS approaches for heterogeneous distributed embedded systems
have assumed a fixed power dissipation of processing elements during the en-
ergy minimisation. In reality this might not be true. For instance, low-level
power minimisation techniques, such as clock gating [28, 29], result in power
variations during the execution of an application. The problem of considering
these power variations during dynamic voltage scaling is addressed in Chapter 3.

Other noticeable approaches, which target energy reduction, are the works
by Chung et al. [39] and Yang et al. [160]. Chung et al. [39] achieved energy
efficiency by leveraging information regarding the execution time variations,
which is supplied to mobile terminals by the contents provider. That is, the con-
tents provider estimates the performance required by the mobile terminals. This
estimation is transmitted to the mobile terminals, which accordingly adapted
there performance to save energy. The approach presented by Yang et al. [160]
uses a two-phase scheduling method. In the first stage, which is performed off-
line (during design time), a Pareto-optimal set of schedules is generated. These
schedules provide different execution time/energy trade-offs. During run-time,
a run-time scheduler selects points along the Pareto set, in order to account for
the dynamic behaviour of the application.

2.5 Concluding Remarks
This chapter has introduced the sources of power dissipation within dis-

tributed embedded systems. Two energy reduction techniques, namely dynamic
power management and dynamic voltage scaling, have been outlined, and the
advantage of DVS over DPM has been highlighted. Furthermore, an overview
of most relevant previous works in the area of co-synthesis has been given.

Notes
1 In order to prevent a confound usage of the terms power and energy, the

following definition is used throughout this book. The term power dissipa-
tion refers to the physical value power, while the terms power consumption,
energy dissipation, and energy consumption refer to physical value energy.

Chapter 3

POWER VARIATION-DRIVEN DYNAMIC
VOLTAGE SCALING

Dynamic voltage scaling is a powerful technique to reduce the energy con-
sumption of processing elements within embedded systems. By simultaneously
scaling supply voltage and operational frequency it becomes possible to trade
off between performance and energy dissipation. This effect can be used to ex-
ploit the temporal performance requirement of an application, in order to save
energy. Many approaches to DVS in distributed systems assume that the power
dissipation of processing elements is independent of the executed instructions
[20, 68, 99]. Therefore, the voltage selection is carried out considering a con-
stant power dissipation, in the following referred to as fixed power model. In
practice this may not be true. For instance, modern IC designs often make use
of low-level power minimisation techniques, such as clock gating to stop the
switching activity in un-utilised blocks of the circuit [45, 146]; gated clocks
are also used for DVS-PEs [34]. Under such circumstances the power dissi-
pation can vary considerably during the execution of different functions [32].
This chapter presents a voltage scaling technique that takes this power varia-
tion effect into account, in order to increase the potential energy savings. The
voltage scaling strategy is based on an energy-gradient driven heuristic, and the
concept of mapped-and-scheduled task graphs is used to account for task and
communication dependencies in a fast and effective way.

The remainder of this chapter is organised as follows. Section 3.1 motivates
the need for a refined voltage selection that accounts for power variations.
Section 3.2 introduces a new voltage scaling technique which accounts for
power variations. Experimental results are presented in Section 3.3. Finally,
concluding remarks are given in Section 3.4.

35

36 SYSTEM-LEVEL DESIGN TECHNIQUES

3.1 Motivation
This section motivates the consideration of power variations during the volt-

age scaling. The aim of this consideration is to improve the efficiency with
which DVS can be applied.

Variations in the power dissipated by the individual tasks of an embedded
system are caused due to the following two reasons: Firstly, modern IC designs
make heavy use of gated clocks, i.e., unused circuity is selectively “turned off”
by stopping the clock signal to it [45, 146]; this holds also for DVS-PEs [34].
Thereby, unnecessary charging and discharging of the circuit load capacitance
is avoided, which, in turn, results in lower power dissipation (Equation (2.7),
page 21). For example, in the case of a general-purpose processor (GPP), in-
cluding an integer unit and a floating point unit (FPU), it is not desirable to
keep the FPU active if only integer instructions are executed. Hence, the clock
signal to the FPU can be gated (stopped) during the execution of integer in-
structions, which will nullify the switching activity in the FPU. Thus, different
tasks (different use of instructions) dissipate different amounts of power on the
same processing element. In the case of an ARM7TDMI processor the supply
current varies between 5.7mA and 18.3mA, depending on the functionality
which is carried out [32]. The second reason for the power variation effect is
typical for core-based designs, where several different cores reside together on
a single chip. Consider an ASIC accommodating four different cores: a FIR
filter, an IDCT algorithm, a DES encrypt/decrypt unit, CORDIC (coordinate
rotation digital computing) algorithm. Clearly, these four cores vary consider-
ably in complexity. For instance, logic synthesis results show that the FIR filter
requires approximately three times less area than the DES crypto unit [11]. This
heterogeneity results certainly in different power dissipations, accordingly to
which cores are active at a given time.

Taking this power variations into account during the voltage scaling improves
the overall energy efficiency, since the available slack time is distributed more
fairly among the tasks. To illustrate the influence of power variation effects on
the voltage selection, a motivational example is given next. However, before
starting with the example, it is necessary to define the term energy-gradient,
which will be used throughout this chapter.

DEFINITION 3.1 An energy-gradient is defined as the difference between
the energy dissipation of task with the execution time and the reduced
energy dissipation (due to voltage and clock scaling) of the same task when
extended by a time quantum

Mathematically:

where and are calculated based on Equation (2.10).

Power Variation-Driven Dynamic Voltage Scaling 37

Figure 3.1. Architecture and specification for the motivational example

Motivational Example: Considering Power Variations during Voltage Scal-
ing

The intention with this illustrative example is to motivate the consideration of
power variation effects during the voltage scaling of heterogeneous distributed
systems. This is done by using two different power models during the DVS
optimisation: (a) the traditional fixed power model (assuming constant power)
[20, 68, 99] and (b) a power variation model which accounts for the power
dissipation of each task (as proposed in this chapter). Additionally, in order to
address the voltage scaling problem in the presents of power variations a new
energy-gradient voltage scaling strategy is introduced.

The starting point for applying any DVS technique is a scheduled (at nom-
inal voltage and frequency) system specification consisting of tasks and com-
munication, which are mapped onto an allocated architecture. In this simple
example, the considered architecture is composed of two heterogeneous DVS-
PEs (e.g. a Transmeta Crusoe [87] and a StrongARM with Xscale technology
[13]), as shown in Figure 3.1(a). Each PE has its own local memory to store
the different tasks that are mapped onto it. These processing elements are con-
nected through a single bus. The system specification is given by the task graph
shown in Figure 3.1(b), including repetition rate and deadline con-
straints (and Nominal supply voltage and
threshold voltage for the two PEs are given in Table 3.1. This table further
shows the nominal execution times and dynamic power dissipations of each
task, according to their mapping (execution on PE0 or PE1). Furthermore, the
transfer times and power dissipation of the communication activities are shown
in Table 3.2, reflecting the inter-PE communications through the bus. Commu-
nications between tasks on the same PE (intra communications) are assumed to

38 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 3.1. Nominal task execution times and power dissipations

be instantaneous, and their power dissipation is neglected, as in most previous
co-synthesis approaches [30, 41, 49, 89, 99, 118].

Table 3.2. Communication times and power dissipations of communication activities mapped
to the bus

One possible mapping and scheduling of the system tasks and communica-
tions onto the underlying architecture is shown in Figure 3.2, which describes
the power dissipation over time, that is, the power profile of PEs and CLs. It
can be observed that PE0 accommodates task and while the remaining
tasks are mapped to PE1. In accordance to this mapping, two inter-PE
communications over the bus are required between tasks and as well as
between tasks and The communication link CL0, connecting both PEs,
shows these two communications, and

The dynamic system energy dissipation of this configuration at nominal sup-
ply voltage can be calculated using the dynamic power values and execution
times given in Tables 3.1 and 3.2. The tasks mapped to PE0 (and) consume
an energy of 0.15ms · 85mW + 0.15ms · 100mW= 27.75µJ, while the tasks as-
signed to PE1 dissipate 0.3ms · 20mW+0.75ms · 15mW+0.15ms.
80mW = 29.25µJ. Taking into account the communications on CL0
and which consume 0.05ms · 5mW + 0.10ms · 5mW = 0.75µJ, the
overall energy dissipation results in 27.75µJ + 29.25µJ + 0.75µJ = 57.75µJ.
Obviously, since the execution of task finishes at 1.4ms and the task deadline
is at 1.5ms, a slack time of 0.1ms is available, as indicated in Figure 3.2. The
same holds for task which finishes its execution after 1.5ms, leaving a slack

Power Variation-Driven Dynamic Voltage Scaling 39

Figure 3.2. Power profile of a possible mapping and schedule at nominal supply voltage (no
DVS is applied)

of 0.1ms until its deadline of 1.6ms is reached. These slacks can be used to
extend the task execution times. Thus, the DVS-PEs can be slowed down by
scaling the supply voltage and accordingly the clock frequency, following the
relation given in Equation (2.8). Let us consider two cases for the identification
of scaling voltages: (a) When a fixed power model is used (power variations are
neglected, as in previous work [20, 68, 99]), i.e., all tasks mapped to the same
PE are assumed to consume the same constant amount of power, and (b) a more
generalised and realistic power model allowing for power variations among the
tasks (as proposed in this work).

One approach to optimise the energy dissipation, which neglects the power
profile, is to distribute the slack time evenly among the tasks, that is, in the given
example each task is “stretched” using the same extension factor [68]. This is
illustrated in Figure 3.3(a), where each task execution is extended using a factor
of For example, the execution of task was extended to 0.161ms
(0.15ms · 1.074). Similarly, the remaining tasks. The extension factor can be
calculated considering the longest path to the task with the smallest slack time.
In the example at hand, both deadline tasks (and) have a slack of 0.1ms;
hence, we have the choice (both possibilities would result in the same extension
factor). Consider the path indicated in Figure 3.2, which involves the tasks

and The extension factor is given by:

40 SYSTEM-LEVEL DESIGN TECHNIQUES

where is the nominal execution time, denotes the slack time, and
refers to all tasks on the path. Communications are neglected in this equation
since they are not subject to scaling. Based on the execution values given in
Table 3.1 and the 0.1ms slack time, the extension factor results in:

Thus, the extended task executions can be calculated as:

and These execution
times correspond to the schedule shown in Figure 3.3(a). In practice, extending
a task is equivalent to executing the tasks at a lower performance, that is, at a
lower operational frequency. This further allows to lower the supply voltages
of PE0 and PE1 in accordance to the following formula, which has been derived
from Equation (2.8):

where denotes the normalised delay, which, in this example, is equal to the
extension factor The constant is given by:

Thus, the reduced voltages of PE0 is calculated as:

using the nominal supply voltage and the threshold voltage
as given in Table 3.1. In the same way, the scaled supply voltage for PE1

can be calculated as using and Ad-
justing the supply voltages of the PEs to theses levels, the task deadlines are still
satisfied, and the power dissipations are reduced. According to Equation (2.7),
the power dissipation of each task can be calculated using the following relation:

Power Variation-Driven Dynamic Voltage Scaling 41

Figure 3.3. Two different voltage scaled schedules

considering that is constant for a given task and that relation between re-
duced operational frequency and maximal operational frequency is
equivalent to the inverse of the extension factor Out of this,
the individual power dissipations can be calculated as:

and Taking into account the extended exe-
cution times and the energy dissipated by communications, the total energy con-
sumption of the schedule shown in Figure 3.3(a) results in: E = (72.57mW ·
0.161ms+17.08mW-0.322ms+12.81mW·0.806ms+68.33mW·0.161ms+
85.38mW · 0.161ms) + (5mW · 0.05ms + 5mW · 0.10ms) = 53.03µJ. This
is equivalent to a reduction of 8.2%.

Now consider the case when the generalised power model (allowing power
variations) is employed during the identification of scaling voltages for the
task executions. This optimisation is based on an energy-gradient that has
been defined in Equation (3.1). For a simpler illustration of the method, a
fixed time quanta size is assumed, which is 10 times smaller
than the available deadline slack (0.1ms). Having defined the time quantum
size it is now possible to calculate an energy-gradient for each task,
using Equations (3.2) and (3.4)). For instance, consider task The en-
ergy dissipation of this task at nominal supply voltage can be calculated as

42 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 3.3. Evolution of the energy-gradients during voltage scaling

using the values given in Table 3.1.
Extending the execution of the task by from 0.15ms to 0.16ms
is equivalent to an extension factor of 0.16ms/0.15ms = 1.0667. The scaled
supply voltage of PE0 for this extension is 4.808V according to Equations (3.2).
Running the task at this supply voltage would result in a power dissipation of

(using Equation (3.4)),
and hence lead to an energy consumption of 73.69mW • 0.16ms = 11.79µJ.
Thus, the energy-gradient is given by
The energy-gradients of the remaining tasks are calculated in the same way
and result in: and

Clearly, the task with the highest energy-gradient (in this
case task will improve the energy dissipation by the highest amount when
extended by Therefore, the first time quantum is assigned to task In
this manner, time quanta are iteratively distributed among the tasks until dead-
lines prevent further scalings. This optimisation process is illustrated through
Table 3.3. The table shows the evolving energy-gradients for each of the
five tasks and highlights the task to which a time quantum is as-
signed, that is, the task with the highest energy-gradient. The first row holds the

Power Variation-Driven Dynamic Voltage Scaling 43

energy-gradients that have been calculated just above. As mentioned, task
gains most out of an extension by Hence, the time quantum is
assigned to task reducing its energy consumption by 1.130µJ from 15µJ to
13.870µJ. Having extended this tasks, its energy-gradient needs to be recalcu-
lated as
The updated energy-gradient is shown in the second row of Table 3.3 (iter-
ation 2). No time quanta have been distributed to the tasks and

thus, their energy-gradients remain unchanged. Considering the second
iteration, task still achieves the highest energy saving when extended by

with Therefore, task is extended by a
second and its energy-gradient is updated to 0.833. In the third iteration
task gains most of an extension and thus is extended. This iterative ex-
tension of tasks is repeated until no further extensions are possible without
violations of task deadlines. This can be seen, for example, in the itera-
tion. Here the previous task extensions result in a situation where the task
just finishes in time, i.e., before its deadline is exceeded. Any further delay of
task or of any task that influences the finishing time of task (i.e. the

) would render the schedule infeasible. For this reason the tasks
and are removed from the list (Table 3.3). Similarly, the last remaining

task reaches its deadline after the iteration. At this point, no further
scaling is possible and the distribution of slack is aborted. Note, although time
quanta of are distributed 16 times, only the available slack of
is exploited. This is due to the fact that some task extensions require slack
from both PEs (because of task dependencies), while others are restricted to
the slack of one PE. The last row of Table 3.3 shows how much the individual
tasks have been extended. Accordingly, the new execution times are given as
follows:

and
These extended execution times allow

to lower the supply voltages during the execution of tasks and to
4.349V, 2.717V, and 4.113V (using Equation 3.2), respectively, while the
tasks and are ran at nominal supply voltage. Thus, the power dissipations
of the tasks are:

and This results in
a task energy dissipation of E = 50.77mW · 0.19ms + 20mW · 0.30ms +
15mW · 0.75ms + 38.74mW · 0.21ms + 48.33mW · 0.21ms = 45.18µJ.
Adding the communication energy, the total energy consumption is given by
45.18µJ + (5mW·0.05ms + 5mW · 0.10ms) = 45.93µJ. This represents an
energy reduction of 20.47%, which substantially higher compared to a reduc-
tion of 8.2% obtained with the power profile neglecting approach. Concluding,
the power variations should be taken into account during the voltage selection
in order to achieve further reductions in the energy dissipation. Many previous

44 SYSTEM-LEVEL DESIGN TECHNIQUES

DVS approaches for distributed system have considered the fixed power model,
i.e., power variations were neglected. To overcome this limitation, the follow-
ing section introduces a new voltage scaling technique capable of taking power
variations into account with the aim to improve energy savings.

3.2 Algorithms for Dynamic Voltage Scaling
Having briefly outlined a new energy-gradient-based voltage scaling strategy

in the previous section and shown the advantage of taking the power variations
into account, this section introduces effective algorithms to implement this
approach. Section 3.2.1 describes an novel energy-gradient voltage scaling,
which is based on a new mapped-and-scheduled task graph structure (MSTG).
In Section 3.2.2, this algorithm is enhanced towards discrete voltage selection.
Section 3.2.3 analyses the computational complexity of the proposed voltage
scaling algorithm.

3.2.1 Energy-Gradient-Based Voltage Scaling
The aim of the introduced DVS approach for distributed systems is to identify

scaling voltages under the consideration of power variation effects. This is
done for the scheduled and mapped system specification, such that the total
dynamic energy dissipation is minimised. The presented approach assumes
that no restrictions are placed on the scaling voltages, i.e., the technique targets
variable-voltage systems (nearly continuous range of possible supply voltages)
rather than multi-voltage systems (small and limited number of potential supply
voltages). One particular aim of the voltage scaling technique is the energy
estimation during the co-synthesis. Therefore, low optimisation times are of
crucial importance, since the voltage scaling is executed in the innermost loop
of an iterative co-synthesis process. One step towards this goal is the mapped-
and-scheduled task graph structure, which will be introduced as part of the
following voltage scaling algorithm. The overall voltage scaling algorithm is
summarised in Figure 3.4, which is outlined next.

The input to the algorithm consists of the task graph specification, which
has been mapped and scheduled beforehand onto a given system architecture.
Furthermore, execution times and power dissipations are part of the architectural
information, which also includes other necessary component properties, like
the nominal supply voltage the threshold voltages etc. The minimal
extension time denotes the minimal time quantum to be distributed in
each step of the algorithm. It is defined in order to speed up the determination of
the voltage selection by preventing insignificant small extensions, which would
lead to trivial power reductions.

To allow a fast and correct extension of task executions, which might in-
fluence other tasks and communications of the system due to interdependen-

Power Variation-Driven Dynamic Voltage Scaling 45

Algorithm: PV-DVS
Input:

Output:

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:

task graph
mapping
schedule
architectural information
minimum extension time

energy optimised voltages
dissipated dynamic energy E

MSTG_TRANSFORM //Generate MSTG from

forall
forall {calculate }
forall {if then }

if then
for all {calculate }
reorder in decreasing order of
while {

select first task

update
forall {update and }
forall {if

then }
if then

forall {update }
reorder in decreasing order of

}
delete MSTG
return and

Figure 3.4. Pseudo code of the proposed heuristic (PV-DVS) algorithm

cies, it is beneficial to capture the schedule and mapping information into
the task graph (line 01 in Figure 3.4). This can be achieved by generating
a mapped-and-scheduled task graph (MSTG) structure, which is a transformed
copy of the initial task graph. Figure 3.5 illustrates this transformation. The
transformation consists of two steps, also given in the pseudo code of the
MSTG_TRANSFORM algorithm (Figure 3.6): Firstly, all communications
(edges) that are mapped to communication links are replaced by pseudo com-
munication nodes and appropriate edges, thereby preserving the specified func-

46 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 3.5. Capturing the mapping and schedule information into the task graph by using
pseudo edges and communication task

tionality. Secondly, all nodes mapped to a certain PE or CL are traversed in
chronological order of execution and linked by pseudo-edges, if an edge does
not already exist. In this way, the schedule and mapping are inherited into
the task graph, and the influence of a task extension can be easily propagated
through the system schedule by traversing the MSTG in a breadth-first order.
Consider, for instance, the extension of task The initial task graph (Fig-
ure 3.5(a)) does not reveal if the extension of task has an influence on any
other task or communication, except on task However, the scheduling and
mapping shown in Figure 3.5(b) indicates that an extension of task will in-
fluence the subsequent task The MSTG shown Figure 3.5(c) captures this
dependency through an pseudo edge between the tasks and The main
advantage of this tactic lies within the linear time complexity of the breadth-first
search algorithm [63], which is leveraged to update the start and end times of all
influenced activities (tasks as well as communications), due to voltage scaling.

After the initial task graph has been transformed into a MSTG, the DVS
continues with line 02 (Figure 3.4), where a priority queue is initialised.
In order to identify all extendable tasks, the algorithm calculates the available
slack times of each hard deadline task (line 03). This slack is given by
the difference between task deadline and the task finishing time

where and denote the task start and execution time, respectively.
The algorithm then calculates the available slack times of all tasks, taking
into account the interrelation between tasks and communications (line 04). For
this purpose an inverse breadth-first search algorithm is used to visit all nodes
of the MSTG to inherit the slack time of influenced tasks. If a tasks has several
successors, the smallest slack is inherited to ensure that no deadlines will be
exceeded during the voltage scaling. In line 05, the algorithm includes tasks
with an available slack time greater or equal than the minimal extension time

Power Variation-Driven Dynamic Voltage Scaling 47

into the priority queue In this way, tasks with negligible small
or no extension possibility are excluded from the scaling process. The initial
extension time is calculated by dividing the smallest slack time among the
extendable task (min by the number of extendable tasks (line 06). This
extension time, however, should not be smaller than the minimal extension time

(the selection of an appropriate will be discussed in Section 3.3).
It is now possible to calculate the energy-gradients of all extendable tasks,
that is, the tasks in the queue using the Equations (3.1), (3.2), and (3.4), as
indicated in line 07. In line 08, the priority queue is reordered in decreasing
order of the energy-gradients.

Now the distribution of slack starts. The algorithm iterates the steps between
lines 09 and 18 until no extendable tasks are left in the priority queue In
each of these iterations the algorithm picks the first element from the priority
queue, the task which leads to the highest energy reduction (line 10). This task

Algorithm: MSTG_TRANSFORM

Input:

Output:

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:

12:
13:
14:
15:
16:
17:

task graph
scheduling and mapping information
mapped and scheduled task graph (MSTG)

forall { //insert communication tasks
if is mapped to any link {

insert new communication task
insert edge from task to task
insert edge from task to task
remove

}
}
forall { //insert pseudo edges

predecessor task
traverse all task mapped to
in chronological order {

if = NIL)
insert edge from to

else

}
}

Figure 3.6. Pseudo code of task graph to mapped-and-scheduled task graph transformation

48 SYSTEM-LEVEL DESIGN TECHNIQUES

is then extended by and the energy dissipation value is updated (lines 11
and 12) according to Equations (2.8) and (2.10). In line 13, the extension is
propagated through the MSTG, since successor tasks might have been affected
by the extension in terms of start time end time and available
slack time This propagation is carried out using a breadth-first search to visit
all successors of the extended task, i.e., tasks and communications that might
have been affected by the extension. In the next step (line 14), inextensible tasks
are removed from the extendable task queue if their available slack is
smaller than the minimal extension time or their scaled supply voltage

is smaller or equal to the threshold voltage Taking into account the tasks
in the new extendable queue, the time quantum is recalculated (line 15), and
based on this value, the energy-gradients are updated (line 16). The priority
queue is reordered according to the new energy-gradients (line 17). At this
point, the algorithm either invokes a new iteration or terminates, based on the
state of the extendable task queue. On algorithm completion, the MSTG copy
is deleted and the scaling voltages for each task execution as well as the total
dynamic energy dissipations are returned (lines 19 and 20).

3.2.2 Discrete Voltages
The algorithm, as described above, produces scaling voltages under the as-

sumption that variable-voltage PEs are available that support continuous voltage
scaling. However, it is possible to adapt the generated scaling voltages towards
multi-voltage PEs, which are able to run at a restricted number of predefined
voltages, as for example the case for the processor presented by Burd et al. [34,
36]. This processor has the ability to run at 15 different operational frequency
(5 to 80 MHz) and voltage settings. It has been shown in [80] that the two
discrete supply voltages and around the continuous
selected voltage are the ones which can be used to minimise the energy
dissipation, under the assumption that the time overhead for switching between
different voltages can be neglected. (Although, these two voltages do not neces-
sarily optimally minimise the energy consumption [162].) Thus, the proposed
approach can be used for voltage selection on multi-voltage PEs. Given a task

with execution time at the continuous selected voltage then, in order
to achieve minimal energy consumption, the same task will execute on the
multiple voltage PE for time units at the supply voltage and for time
units at supply voltage where

Power Variation-Driven Dynamic Voltage Scaling 49

Nevertheless, since the task execution times are given by

where denotes the number of clock cycles executed at frequency it
is clear that the calculated execution times might have to be adjusted because
clock cycles are given as integer values. This is because a task execution is
performed on a cycle-by-cycle base. Therefore, the calculated execution times

and are adjusted in the following way: The floor integer number of
clock cycle for the execution at low voltage is calculated as:

While the number of clock cycles
given by:

executed at the high voltage is

where is the total number of clock cycles a task requires for its execution.
Thereby it is insured that the overall task execution time is not exceeded.
The adjusted execution times at voltages and are then given by,

3.2.3 Algorithm Complexity
As mentioned in Section 3.2.1, the voltage scaling algorithm is intended to

be used within the innermost loop of the co-synthesis where scheduling and
mapping are iteratively optimised. Therefore, a moderate computational com-
plexity is desirable in order to allow a thorough exploration of the design space
in reasonable amounts of time. The complexity of the proposed PV-DVS al-
gorithm can be derived as follows. The initial task graph can be copied and
transformed into a MSTG in linear time. The WHILE loop (line 09 in Figure 3.4)
is executed in the worst case times, where is the number of nodes in
the graph, since all tasks might be extendable. However, depending on
and tasks might be extended more than once, and for the worst case, is
the maximum number of such extensions. The inner part of the WHILE loop
shows the following complexities: The propagation of extensions takes in
the worst case is the number of edges in the graph), since all nodes and
edges might have to be visited by the breadth-first search (line 13). Removing
inextensible tasks, again, might take steps. At most steps are needed to
determine the new extension time And finally, updating the extendable
queue takes operations (the queue is implemented as Fibonacci heap [59]).
All other calculations inside the WHILE loop are executed in constant time.

50 SYSTEM-LEVEL DESIGN TECHNIQUES

Therefore, the time complexity of the proposed PV-DVS algorithm is given as
It should be noted that the extendable task queue is

progressively reduced from length to 0. The reduction is not uniform since it
might occur that suddenly (at the same time) many tasks become inextensible
and are excluded from the queue. This, additionally, indicates that the com-
plexity derived above is valid for the worst case. Furthermore, to account for
DVS-PEs which run at discrete voltages, the suitable supply voltage have to
been derived from the continues voltage. This can be done in linear time. In
summary, the overall computational complexity (including MSTG generation,
PV-DVS, and discrete voltage calculation) is quadratic in the number of tasks
and communications.

3.3 Experimental Results: Energy-Gradient based
Dynamic Voltage Scaling

To demonstrate the efficiency and the applicability of the proposed gen-
eralised DVS technique (considering the power variation model) in reducing
the energy dissipation of heterogeneous distributed systems containing power-
managed PEs, numerous experiments have been carried out. The DVS algo-
rithm outlined in this chapter has been implemented using C++ on a Pentium-
III/750MHz Linux PC with 128MB RAM. The used benchmark examples con-
sist of 7 task graphs taken from previously published literature [20, 78] and
28 task graphs automatically generated using TGFF [48]. These benchmarks
are used to cover a wide spectrum of application diversity. The complexity of
these task graph examples varies between 8 to 100 tasks with 7 to 151 edges.
The amount of processing elements (PEs) and communication links (CLs) in
the technology libraries varies between 4 and 16. The benchmarks used in this
chapter are grouped into three major sets:

Our TGFF generated task graphs (tgff1–tgff25, tgff4_t,tgff4_fixed),
and tgff17_m are mapped onto heterogeneous architectures containing
power-managed DVS-PEs and standard PEs without DVS. Thus, these ex-
amples show varying power characteristics and component properties. The
benchmark examples tgff4_t and tgff4_fixed are identical to tgff4
with slight modifications; tgff4_t denotes a task graph alternative with a
critical tight deadline, while tgff4_fixed uses only DVS-PEs with a fixed
power dissipation. Similarly, the example tgff 17_m is a slightly modified
version of tgff 17 with a different hardware architecture.

(a)

(b) The examples of Hou and Wolf [78] are two hypothetical task graphs (Hou
and Hou_clustered). The task graph Hou_clustered represents the same
functionality as Hou but the task graph is collapsed from 20 to 8 tasks.
Since their technology library does not contain any DVS-enabled PEs, the
given PEs are extended towards DVS capability (with and

Power Variation-Driven Dynamic Voltage Scaling 51

These examples also show different power dissipations
(power variations) among the tasks, unlike the first benchmarks set.

(c) The applications used by Bambha et al. [20] consist of two differently im-
plemented fast Fourier transformations (fft1 and fft3), a Karplus-Strong
music synthesis algorithm (Karp10), a quadrature mirror filter bank (qmf4),
and a measurement application (meas). These real-life benchmarks of mod-
erate size (12–28 tasks) use architectures composed of 2 to 6 identical DVS-
PEs, assuming constant power dissipation. Supply voltages are between 0.8
and 7 volts. The throughput constraints and initial average power consump-
tions are calculated at a reference voltage of 5 volts.

The following experimental results are split into two sections. The first set of
experiments concentrates on the influence of the power variation effect (Sec-
tion 3.3.1), while the second demonstrate the importance of an appropriate
selection of the minimal extension time (Section 3.3.2).

3.3.1 Power Variations
To demonstrate the influence of power variations on the efficiency of DVS, the

PV-DVS algorithm (Section 3.2) is compared to a power neglecting approach,
i.e., a DVS approach that makes use of the fixed power model. The power
neglecting approach (in the following referred to as EVEN-DVS) is based on
the intuitive idea to distribute available slack time evenly among the processing
elements, somewhat similar to the slack distribution idea used in [99].

Results of Benchmarks (a) and (b):
Table 3.4 shows a comparison between the EVEN-DVS (fixed power model)
and the PV-DVS approach (power variation model) using the tgff1–tgff 25
benchmarks as well as the two examples from Hou et al. [78] (Hou and
Hou_clustered). In order to judge the complexity of the individual benchmark
examples, the table gives the number of nodes and edges in the task graphs. The
comparison between the two DVS approaches is carried out with respect to the
energy dissipation when no DVS is employed, i.e., when the tasks are executed
at nominal supply voltage (highest energy consumption). Consider, for ex-
ample, benchmark tgff17, which consist of 29 tasks and 56 communications
between tasks. The unsealed execution (NO-DVS) of the application dissipates
an energy of 23459µJ. Using an even distribution of slack time (EVEN-DVS)
this power consumption can be reduce to 20396.41 µJ, a reduction of 13.06%.
However, considering the power variations by using the PV-DVS algorithm
it is possible to further reduced the energy to 18334.01µJ, when compared
to the nominal energy dissipation a reduction of 21.85%. For all examples
shown in Table 3.4 it is assumed that the mapping and schedule have been
pre-determined, using a static mapping and a schedule generated by a mobility-

52 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 3.4. Comparison of the presented PV-DVS optimisation with the fixed power model
using EVEN-DVS approach

based list scheduling technique [158]. Thus, the energy reductions are solely
achieved through voltage scaling. As expected, both the EVEN-DVS and the
PV-DVS technique reduced the energy dissipation of the systems in all cases
(Column 6 and 9). It can be observed that the proposed DVS heuristic (PV-
DVS) was able to further reduce the energy dissipation of all examples, when
compared to EVEN-DVS. Due to the particular implementation of the DVS
algorithm, which distributes slack evenly among the PEs (EVEN-DVS), also
slack is allocated on non-DVS-PEs. Therefore, the higher energy reductions of
the proposed DVS algorithm are due to two facts. Firstly, the EVEN-DVS allo-
cates slack time on non-DVS-PEs. These times, of course, cannot be exploited

Power Variation-Driven Dynamic Voltage Scaling 53

Table 3.5. PV-DVS results using the benchmarks of Bambha et al. [20]

to lower the power consumption. Secondly, the proposed DVS technique con-
siders the power variations during the voltage scaling. This leads to better
energy reductions (see Motivational Example 1, Section 3.1). To distinguish
between both effects, architectures that consists of DVS-PEs only have been
indicated in Table 3.4. In these examples, the higher energy reduction is solely
achieved by taking the power profile into account. The remaining examples
achieve increased energy efficiency due to both effects. It should be noted that
it is hard to judge the achievable energy savings in a straightforward way, since
the savings depend on task interdependencies as well as on the individual power
dissipations of the given tasks.

In order to get an idea about the voltages scaled schedules consider Fig-
ure 3.7. This figure shows the task execution of benchmark tgff 17_m for three
different situations. Firstly, Figure 3.7(a) depicts the schedule at nominal supply
voltage, i.e., tasks are executed as fast as possible and
hence, consuming the maximal energy. Secondly, Figure 3.7(b) corresponds
to an even distribution of slack time. And finally, Figure 3.7(c) illustrates the
scaled execution based on the proposed PV-DVS algorithm. In this particular
benchmark only one processing element (PE2) is DVS enabled, therefore, the
execution properties of tasks mapped onto PE0 and PE1 are static.

Results of Benchmark (c):
The next experiments are concerned with the benchmark set used by Bambha et
al. [20]. Since they use a different communication model (contention, requests
for the bus, etc.), the throughput constraints had to be re-calculated. Therefore, a
direct comparison between the results reported in [20] and the results presented
here is not valid. Nevertheless, the re-calculation of the throughput was carried
out for the same task mapping and execution order as in [20], which is based on
a dynamic level scheduling approach [138]. The results of these five examples,
obtained using the PV-DVS method, are given in Table 3.5. It can be observed
that in all cases the energy was decreased, with reductions between 9.07% to

54 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 3.7. Three identical execution orders of the tgff 17_m benchmark: (a) unsealed exe-
cution at nominal supply voltage (NO-DVS), (b) using the EVEN-DVS, and (c) the PV-DVS
approach

Power Variation-Driven Dynamic Voltage Scaling 55

38.67%. Furthermore, the highly serialised structure of meas allowed us to
calculate the theoretically optimal voltage schedule for this example. Using the
optimal supply voltages results in 13% energy saving. The PV-DVS algorithm
achieved for the same example a reduction of 9.07%, which is only 3.93%
higher than the theoretically optimal solution. The reason for this for this is
the greediness of the PV-DVS algorithm which always slacks the task which
achieves the highest possible energy savings on a single PE; however, scaling
this single task might require slack on several different PEs.

The presented results assume that computation and voltage scaling can be
carried out concurrently, as the case of the processor introduced in [34]. Fur-
ther, the time overhead needed by the processor to switch between two supply
voltages is neglected since the used tasks are considered to be of coarse gran-
ularity. Therefore, the switching can be considered to be only a small fraction
of the total task execution time (for real-world DVS processors this is in the
range of 10–70µs for a full transition from the highest to the lowest supply
voltage and vice versa [34]). However, in the case of fine-grained task this
overhead might influence the optimisation and should therefore be considered.
Techniques which consider the scaling overhead have been recently proposed
[17, 77, 106, 162].

3.3.2 Minimal Extension Time
To give insight into the dependencies between the computation effort, solu-

tion quality, and the minimal extension time (see also the complexity
analysis in Section 3.2.3), two additional experiments were conducted. In order
to achieve accurate results, especially for the measurement of the optimisation
times, the experiments are carried out using two large task graphs with 80
(tgff 23) and 400 (large1) tasks. Figure 3.8 illustrates the dependency be-
tween the minimal extension time and the solution quality (given as
reduced energy E over nominal energy It can be observed that no en-
ergy reduction can be achieved until is smaller than the largest slack
available in the activity schedule (2364 for tgff23 and 29581 for large1,
see Figure 3.8). Clearly, if the algorithm must distribute time quanta bigger
than any available slack, it cannot perform any voltage reduction, and there-
fore But energy reductions can be achieved by decreasing
to a value below the biggest slack that is present on a DVS-PE. In the case
of example tgff23, the energy consumption approaches 87% of the nominal
energy when reducing below 2364. Nevertheless, it is not desirable to
decrease the minimal extension time too much, since the additional reductions
become insignificant (the curves level out) and the unnecessary extension will
only increase the computational time of the optimisation.

The dependency between minimal extension time and optimisation
time of the DVS algorithm is illustrated in Figure 3.9, using a double loga-

56 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 3.8. Energy reduction quality dependent on minimal extension time

Figure 3.9. Execution time dependent on minimal extension time

rithmic scale. It can be seen that with decreasing the optimisation time
increases. Similar to the observations given before, the algorithm cannot start
any optimisation before is smaller than the biggest slack given in the
schedule (indicated by the vertical dashed lines in Figure 3.9). It is therefore
important to find a good value for which trades off between solution
quality and optimisation time. Finally, Figure 3.10 shows the energy reduction

Power Variation-Driven Dynamic Voltage Scaling 57

Figure 3.10. Energy reduction quality dependent on execution time

dependent on the optimisation time. As the plot illustrates, with an increasing
the optimisation time decrease while the energy dissipation increases

due to a less accurate calculation of the scaled supply voltages.
These experiment have shown that a well chosen is essential for a fast

and accurate energy estimation using the PV-DVS algorithm. Accordingly, a
good choice is important to speed up the voltage scaling process. The following
describes a heuristic method that has been used in the presented experiments to
find an appropriate setting for each solution candidate. It is based on the
observation that for all conducted benchmarks experiments the characteristics
shown in Figure 3.8 and Figure 3.9 hold. With reference to Figure 3.8, the nearly
linear (in a semi-logarithmic scale) energy drop, after decreasing below
the highest DVS slack, is interpolated by a logarithmic function (indicated as
“Interpolation” in Figure 3.8):

where the constants and are calculated using two initial points in the quasi
linear part of the graph. The first point (Point 1) corresponds to the highest
available slack on any of the DVS-PEs, hence, matches the nominal energy
dissipation. This point can be found in linear time and is indicated in Figure 3.8.
To establish the second point needed for the interpolation, the DVS algorithm
is run with a three times smaller than the highest DVS slack to find
its corresponding reduced energy dissipation E°. For all used examples this
was still in the steeply dropping part of the graph. The second point shown in
Figure 3.8 was found in this way. Using both points, the constants and are

58 SYSTEM-LEVEL DESIGN TECHNIQUES

given by:

and

The resulting linear interpolation for example large1 is shown in Figure 3.8.
Of course, finding the second point has a computational overhead, however,
as it can be seen from Figure 3.8 and Figure 3.9, this “investment” pays off
when compared to a wrong choice of which could result in much higher
computational time or much higher energy consumption than necessary. The
next step towards a good value for is it to find a “rough” estimation
for the achievable energy reduction For this purpose the average power
dissipations on all DVS-PEs are calculated. The estimation used in the presented
approach is based on the average power dissipation on each DVS-PE and the
maximal available slack. Generally, such an estimation is too optimistic, i.e.,
it will be lower than the in reality achievable energy dissipation. An estimated
energy dissipation for example large1 is indicated in Figure 3.8. The minimal
extension time could be set to the intersection of the energy estimation
and the interpolated energy drop. However, in the proposed heuristic the value
of is set one order of magnitude lower (as indicated by the cross in
Figure 3.8). This is done to account for the fact that an energy estimation close
to the real achievable energy reduction would be approximately one order of
magnitude away from a good On the other hand, if the energy estimation
would be far below the real achievable energy reduction, the calculated
would become unnecessary small. Therefore, no smaller than 2.5 orders
of magnitude (compared to the maximal DVS slack) is allowed. This is based
on the observation that all used benchmarks show similar characteristics, and
that an ideal can mostly be found at maximal 2.5 orders of magnitude
from the maximal DVS slack. It is fair to say, these extreme situations appear
rarely during the optimisations process.

3.4 Concluding Remarks
This chapter has introduced a new energy minimisation technique for dy-

namic voltage scaling in distributed heterogeneous systems. The proposed
technique is based on an energy-gradient based heuristic that takes into ac-
count variations in the power profile of DVS processing elements as well as the
heterogeneity of the scalable components. In order to keep the computational
complexity low, a novel mapped-and-scheduled task graph (MSTG) structure
was proposed, which allows the propagation of task extensions in linear time.
The selection of the minimal extension time was addressed through a heuristic
approach that leverage observations taken from extensive experiments. Ex-

Power Variation-Driven Dynamic Voltage Scaling 59

perimental results have reinforced the argument that power variations should
be taken into account, in order to achieve higher energy saving compared to
approaches that consider a fixed power model. Although the introduced PV-
DVS algorithm has an overall quadratic computational complexity (while the
fixed-power-model DVS can be applied in linear time), this complexity is low
enough to scale system specifications of realistic size (10–100 tasks) in small
amount of run-time.

Chapter 4

OPTIMISATION OF MAPPING AND SCHEDULING
FOR DYNAMIC VOLTAGE SCALING

Chapter 3 has shown how the energy consumption of distributed embedded
systems can be minimised using a dynamic voltage scaling (DVS) technique
that accounts for the power variations (PV) of tasks. This PV-DVS technique
was applied to applications that had been statically mapped and scheduled be-
forehand. Nevertheless, the efficiency with which DVS can be applied depends
significantly on the available idle and slack times within the system schedule.
Clearly, application mapping (Section 1.3, page 9) as well as activity schedul-
ing (Section 1.3, page 11) affect considerably these idle and slack times. For
this reason a co-synthesis, which incorporates mapping and scheduling, should
tightly integrate the consideration of DVS, in order to find solutions that care-
fully increase the amount of available idle and slack times on the DVS-PEs. This
chapter introduces new techniques and algorithms for scheduling and mapping
in distributed systems, which aim, in addition to traditional design goals such
as performance and area usage, at an optimised utilisation of the DVS-PEs, and
hence the reduction of the energy consumption. The overall co-synthesis flow
is outlined in Figure 4.1. As indicated, the introduced co-synthesis is split into
two steps:

Combined optimisation of scheduling and communication mapping

Task mapping optimisation

The remainder of this chapter outlines this two-step co-synthesis process. The
chapter is organised as follows. Section 4.1 concentrates on energy minimisa-
tion through schedule optimisation towards an effective utilisation of PV-DVS.
Techniques and algorithms for the optimisation of task and communication
mapping are introduced in Section 4.2. Section 4.3 demonstrates through the
usage of a real-life example how the proposed techniques can be applied in

61

62 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 4.1. Co-synthesis flow for the optimisation of scheduling and mapping towards the
utilisation of PV-DVS

order to optimise the system implementation (including hardware architecture)
towards energy-efficiency. Finally, Section 4.4 gives a summary of this chapter
and draws some conclusions.

4.1 Schedule Optimisation
This section is concerned with the scheduling problem of heterogeneous

distributed systems that contain DVS-PEs. The scheduling of tasks and com-
munications greatly influences how efficiently DVS can be exploited, due to the
direct impact on the available slack times. In general, the more slack is available
in the schedule, the higher will be the achievable energy savings by exploiting
DVS. This, however, becomes much more complex and does not hold always
for distributed systems under the consideration of the power variation model.
In such a case, the available slack for high energy dissipating tasks should be
considered more important than the slack of tasks consuming a minor amount
of power.

This section first motivates the schedule optimisation under the power vari-
ation model in Section 4.1.1. This is followed by Section 4.1.2 which provides
background information about scheduling techniques and genetic algorithms.

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 63

Figure 4.2. Specification and DVS-enabled architecture

Section 4.1.3 introduces a new scheduling algorithm for energy minimisation
through PV-DVS. Finally, Section 4.1.4 presents experimental results.

4.1.1 Motivational Example: Scheduling
The purpose of this motivational example is to highlight the importance of

taking power variations into account, while making energy-conscious schedul-
ing decisions in the presence of DVS-PEs. Consider the system specification
given as task graph in Figure 4.2(a). The seven tasks are mapped
onto the architecture as shown in Figure 4.2(b). The architecture consists of
two DVS-PEs (PE0, PE2) and one non-DVS-PE (PE1), which are connected
through a single bus. The nominal supply voltage and the threshold volt-
age of PE0 and PE2 are and respectively, while
PE1 runs all tasks at (it cannot be scaled). The task execution times

and power dissipations at nominal supply voltage are given in Ta-
ble 4.1, which also shows the task mapping. For the sake of simplicity, the

Table 4.1. Nominal execution times and power dissipations for the mapped tasks

communications are neglected when discussing this particular example. Fig-
ure 4.3(a) shows a possible schedule for the tasks executing at nominal supply

64 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 4.3. A possible schedule not optimised for DVS

voltage, i.e., at maximal supply voltage and consequently the highest energy
dissipation. According to the values given in Table 4.1, the energy dissipa-
tion of this schedule can be calculated as

Considering the
task deadlines given in Figure 4.2(a), it can be observed from the schedule in
Figure 4.3(a) that the tasks and are eligible for scaling, since finishes
execution after 1ms, while its deadline is at Hence, leaving a
slack of 0.4ms. An extension of any other task cannot be tolerated, since task

finishes execution just on its deadline By scaling the schedule,
using the proposed implementation of the PV-DVS technique (taking power
variations into account) presented in Chapter 3, the voltage schedule shown in
Figure 4.3(b) can be produced. In this scaled schedule the tasks and ex-
ecute at 2.08V and 2.34V , respectively. Using Equation (2.6) and considering
that the switched load capacitance is constant for a given task, the
energy consumptions of the tasks and are reduced to

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 65

Figure 4.4. Schedule optimised for DVS considering the power variation model

and

Thereby, the total energy dissipation is given by 0.3ms ·10mW +0.3·20mW +
0.4ms · 15mW + 1.59µJ + 0.4ms · 70mW + 0.2ms · 90mW + 3.01µJ =
65.6µJ. This represents a reduction of 7.6%.

Now, consider a second feasible schedule at nominal supply voltage where
the execution order of and has been swapped, as shown in Figure 4.4(a).
This allows to start task earlier, while the execution of task is delayed.
Since this re-scheduling does not influence the nominal execution times and
power dissipations, the nominal energy consumption remains (as
in first nominal schedule of Figure 4.3(a)). Observing the schedule reveals
that task just finishes execution within its deadline constraint
while task terminates execution after 1.3ms. This leaves a slack of 0.3ms
until its deadline is met. Therefore, only the tasks and can
be scaled. Applying the PV-DVS technique of Chapter 3 returns the scaling
voltages and for the tasks and respectively.
Executing the tasks at these voltages, the energy consumptions are reduced to

Hence, the total energy is reduced from

66 SYSTEM-LEVEL DESIGN TECHNIQUES

71µJ to 0.3ms · 10mW + 0.3 · 20mW + 0.4ms · 15mW + 0.1ms · 40mW +
19.3µJ +9.6µJ +0.3ms·20mW = 53.9µJ. This is an improvement of 24.1%,
while the first schedule achieved only a reduction of 7.6%. Note, although the
schedule in Figure 4.4(a) shows less slack (0.3ms) than the one in Figure 4.3(a)
(0.4ms), its energy reduction is significantly higher with 16.5%. Thus, more
slack does not necessarily lead to increased energy savings. This is due to the
particular power dissipations when executing the different tasks. In summary,
this example has demonstrated how important it is to take into consideration the
power variations during the schedule optimisation. In the presence of power
variations it is not always true that an increased slack time results in lower energy
dissipation, hence an energy-conscious scheduling technique should consider
the power variation model.

4.1.2 Background
This section provides brief background information and introduces the termi-

nology that is used throughout the rest of this chapter. This regards scheduling
techniques (Section 4.1.2.1) as well as genetic algorithms (Section 4.1.2.2).

4.1.2.1 Scheduling Techniques

In general, scheduling techniques can be broadly classified into two cate-
gories: on-line (dynamic) scheduling techniques [44, 125] and off-line (static)
scheduling techniques [16, 91, 111, 125]. The technique in the first class dynam-
ically re-calculates the priorities of tasks during run-time of the application, i.e.,
the schedule can be changed during execution. Obviously, such approaches con-
sume power and time during execution; time which could otherwise be utilised
by DVS to lower the energy dissipation. In the second class, a static schedule
is calculated once before the application is executed (pre-run-time), i.e., the
execution order of tasks and communications is maintained unchanged during
run-time, hence, the power and time overhead is avoided. On-line scheduling
are advantageous when no or only little knowledge is given about the tasks that
have to be performed. In this case, the schedule can be dynamically adapted to
the temporal needs of the application. However, embedded systems are often
application specific, i.e., they execute a fixed set of tasks that is a priori known.
Therefore, an adaption during run-time is not crucial for most embedded sys-
tems. In addition, off-line scheduling can guarantee that tasks deadlines are
met during run-time, while this is not generally the case for dynamic scheduling
[125]. Due to these reasons, the techniques introduced in this book concentrate
on static scheduling.

Static scheduling for distributed systems that execute tasks with interde-
pendences has been intensively studied [16, 30, 91, 111, 121, 138, 158]. This
scheduling problem belongs to the class of NP-hard problems [62], i.e., the
search space for scheduling problems of realistic size is huge (N!, where N

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 67

is the number of tasks and communication). Hence, finding an optimal solu-
tion is extremely computational expensive. For this reason most scheduling
techniques rely on heuristic methods that produced not necessarily optimal so-
lutions, but solutions of high quality. One of the most widely used scheduling
heuristics is list scheduling (LS). List scheduling algorithms take scheduling
decisions based on task priorities. They maintain one or more ready-lists which
contain tasks that are ready to be scheduled. A static schedule is constructed
by scheduling the ready task with the highest priority as soon as the eligible
PE becomes available. Thereby, the assignment of priorities defines the task
execution order. Most traditional LS approaches use various sophisticated al-
gorithms to calculate these task priorities either statically [30, 158] (before list
scheduling) or dynamically [90, 111, 138] (re-calculation after each scheduling
step). Another method for the determination of priorities is used in genetic
list scheduling algorithms (GLSA) [46, 66]. In contrast to list scheduling tech-
niques, which produce a single schedule, GLSAs construct and evaluate many
different schedules during an iterative optimisation process. However, most
of this research on LS and GLSA concentrates on performances aspects only,
i.e., the system schedule is solely optimised to achieve the highest possible
throughput or to meet the imposed task deadlines. On the other hand, the ge-
netic list scheduling approach presented in this chapter (Section 4.1.3) aims to
find schedules that simultaneously meet the system performance requirements
and reduce the energy consumption by effectively exploiting the DVS-PEs. As
the name suggests, genetic list scheduling approaches are based on genetic al-
gorithms, hence, the following section briefly introduces the terminology and
functionality of genetic algorithms.

4.1.2.2 Genetic Algorithms

Genetic algorithms (GAs) have been the subject of numerous investigations
in the last decades, and they have been proven to solve different search and
optimisation problems successfully [18, 64]. By imitating and applying the
principles of natural selection and “survival of the fittest” on a population pool
(several solution candidates), they are able to evolve (optimise) solutions to
real-world problems. Each solution (individual) of the problem to be solved is
encoded as a string (chromosome) and is associated with a solution quality (fit-
ness). Based on their fitness, the individuals are ranked within the solution pool.
In each iteration (generation) the algorithm selects upon the highest ranked in-
dividuals and gives them the opportunity to reproduce by mating (crossover)
with different individuals of the population. This results in new individuals
(offsprings) inheriting certain properties and features of the parent individuals,
thus potentially increasing the probability to have higher solution quality. The
produced offsprings replace the least ranked solutions in the population, which
die out. New individuals are not only generated by means of crossover, but also

68 SYSTEM-LEVEL DESIGN TECHNIQUES

by randomly changing (mutation) values (genes) of a chromosome, occasion-
ally. This provides an additional opportunity to enter unexplored regions of the
search space. The GA iterates until a certain stop criterion is fulfilled, for ex-
ample, the maximum search time has been exceeded or no further improvement
can be made.

4.1.3 Genetic List Scheduling Algorithm
In this section a new scheduling technique for energy minimisation through

DVS is introduced, which addresses the problem motivated in Section 4.1.1, i.e.,
scheduling under the consideration of the power variation model. As mentioned
in the beginning of this chapter, the presented co-synthesis approaches splits
task mapping and scheduling into two separate optimisation steps, although
some synthesis techniques combine these steps within a single optimisation
[30, 46, 66, 83]. The decision to separate task mapping and scheduling into two
“independent” optimisations is based on the following two reasons:

The combination of list scheduling and mapping algorithms decide upon
task priorities which task is to be scheduled next, but at this point it is not
known where to execute the chosen task. Therefore, the execution time and
power dissipation of the task are unknown as well. In this context, it is the
duty of the scheduler to make a “greedy” mapping decision based on the
power and time values with respect to the design objectives. However, DVS
influences the execution times and power dissipations, hence, the mapping
decision made upon the static values might proof to be wrong, especially
from the energy reduction point of view. Separating the scheduling and
mapping into two iterative optimisations overcomes this problem since the
mapping is given before a schedule is constructed.

Due to the constructive nature of list scheduling and mapping algorithms
a solution is constructed one by one. This results in a greedy approach,
which is likely to get trapped at low quality or infeasible solutions in the
presence of tight area and timing constraints. For instance, it is likely that the
scheduler maps early tasks to fast hardware since hardware area is available.
Nevertheless, the scheduling algorithm cannot look ahead and hence no area
might be left when later, timing critical tasks arrive. A solution to overcome
this problem was presented in [83]. However, this approach neglects issues
related to power and a straight-forward enhancement towards DVS is not
possible due to multiple competing design goals. Nevertheless, by splitting
the problem into two steps, this greediness problem is avoided and the
advantage of an increased search space, which is explored iteratively, can be
leveraged. Clearly, increasing the search space results in higher optimisation
times, however, it will be shown in Section 4.1.4 that these times are still
reasonable.

(a)

(b)

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 69

The presented scheduling algorithm for the DVS problem under the consid-
eration of the power variation model uses a genetic list scheduling approach to
optimise the execution order of the tasks towards energy reduction and timing
feasibility. It has been shown that the combination of genetic and list scheduling
algorithms provides a powerful tool for the synthesis of multiprocessor systems.
However, the proposed implementation varies in two fundamental issues from
previous research [46, 66]:

Instead of optimising the schedule solely for performance (reducing the
make-span), the proposed framework considers additionally the issue of
energy minimisation with respect to DVS under the power variation model.

The algorithms described in [46] and [66] employ a list scheduler which
determines not only the execution order of tasks, but also their mapping.
This combination is avoided in order to limit the greediness of the algorithm
which would affect the solution quality.

As opposed to constructive list scheduling technique, genetic list scheduling
approaches do not determine one schedule using a sophisticated algorithm for
the priority assignment, but they construct and evaluate many different schedules
during an iterative priority optimisation process. By encoding the task priorities
into a priority string, it becomes possible to utilise genetic operators, such
as crossover and mutation, to change task priorities and hence generate new
scheduling solutions using static list scheduling. The principles behind genetic
list scheduling approaches are outlined next.

Principle of Genetic List Scheduling
Genetic list scheduling approaches combine fast constructive list scheduling
techniques with the optimisation power of genetic algorithms. The basic idea
behind list scheduling is shown in Figure 4.5, which outlines the construction of
a schedule for a single processor system. Consider the task graph with annotated
priorities in Figure 4.5(a). In the initial scheduling step all tasks with no ingoing
edges are placed into a ready list1, as shown in Figure 4.5(b), Step 1. For the
given task graph this is solely task Being the only task in the ready list, task

is scheduled. After finished its execution, the tasks and become
eligible for scheduling (due to their data dependency on hence, they are
placed into the ready list in decreasing order of their priorities (Scheduling Step
2). At this point represents the task with the highest priority (9), hence it is
scheduled in Step 2. Having scheduled task task becomes ready and thus
it is placed into the ready list. These scheduling procedure is repeated until no
tasks are left in the ready list. Since each scheduling step schedules one task,
seven iterations are necessary. The final schedule is shown in Figure 4.5(c).
Clearly, different assignments of priorities result in different schedules. This is
where the genetic algorithm comes into the play.

70 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 4.5. List scheduling

Figure 4.6. Task priority encoding into a priority string

By encoding the task priorities into a priority string, as shown in Figure 4.6,
it becomes possible to apply an genetic algorithm-based optimisation. The
genetic algorithm aims to find an assignment of priorities that leads to a schedule
solution of high quality in terms of timing behaviour and exploitable slack time.
The main principles behind the genetic list scheduling algorithm are illustrated
in Figure 4.7. These principles are based on two strategies: crossover and
mutation.

Crossover Example
Out of an initial population pool that contains six priority candidate strings, the
strings 1 and 3 are selected. Offsprings are produced by replacing parts of the
first parent string with parts of the second parent sting. Hence, crossover results
in two new offsprings (child 1 and child 2). These new priorities are used to
schedule the activities, in order to determine their quality. According to the
quality, the produced strings are inserted into the solution pool. By selecting
high quality strings for crossover, the chances to evolve priority strings of even

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 71

Figure 4.7. Principle behind the genetic list scheduling algorithm

higher quality are increased. The mating of two strings is carried out with
respect to an arbitrarily selected crossover point.

Mutation Example
In order to enter into unexplored regions of the scheduling space, the genetic
algorithm mutates individuals of the solution pool occasionally (with a low
probability). The mutation is carried out by randomly changing genes of a
randomly selected string. For instance, in Figure 4.7 string 2 is selected and its
third gene is manipulated. The modified string is then reinsert into the solution
pool.

Both crossover and mutation are applied during the iterative execution of the
genetic algorithm. The algorithm terminates after a stop criterion is fulfilled.

Genetic list scheduling approaches (GLSA) have several advantages com-
pared to traditional (constructive) list scheduling methods. These advantages
can be summarised as follows:

Multi-objective optimisation is an important feature that is supported by
genetic algorithms. It provides the opportunity to simultaneously optimise
the implementation towards competing goals and so allows the system de-
signer/architect to choose between several suitable implementations with
different properties.

The enlarged search space (at most different schedules can be
produced) provides the opportunity to find solutions of potentially higher
quality.

There is a large freedom to trade off between acceptable synthesis time
and solution quality; as opposed to constructive techniques, where only one
solution is produced rapidly. In addition, the search process can be initialised

72 SYSTEM-LEVEL DESIGN TECHNIQUES

with such solutions that have been created by constructive techniques, and
the GLSA can be used to further improve these.

GAs with parallel populations and migration schemes provide a powerful
approach to leverage additional computational power of computing clusters,
which are becoming more and more widespread.

A drawback of any iterative improvement method for scheduling is the timing
overhead involved in the successive construction of several scheduling solu-
tions. Nevertheless, in timing critical scheduling situations the additional op-
timisation potential can be exploited to achieve timing feasible schedules and
hence reduce the embedded system cost (this claim will be justified through
extensive experiments in Section 4.2.3).

Implementation Details

The following introduces a DVS optimised genetic list scheduling algorithm
(EE-GLSA 2) that addresses the execution order of tasks and communications
under the consideration of the power variation model. The pseudo code of the
EE-GLSA is show in Figure 4.8, which describes its features and implemen-
tation details. The solution pool (25 individuals) of the first generation is ini-
tialised (step 01) half and half by mobility-based [158] and randomly generated
priorities (with values between the lowest and highest mobility), respectively.
The mobility of a task is given by the difference between the as-late-as-possible
(ALAP) start time and the as-soon-as-possible (start time) of a task [158], This
initial population was empirically found to be a good starting point, leading
to fast convergence (i.e., low optimisation times). The algorithm then enters
the main schedule optimisation loop (step 02–10), which is repeated until no
improvement of at least 1% (with respect to the best found feasible schedule)
is made within 10 generations. Each iteration of the loop goes successively
through the following steps. All new priority candidate strings in the solution
pool are used by the list scheduling algorithm to generate schedules at nomi-
nal supply voltage (step 02). The implemented list scheduler relies solely on
the task priorities to make schedule decisions, i.e., no other techniques, like
e.g. hole filling, are used to optimise the schedule. Although such techniques
can improve the timing behaviour by eliminating idle periods in the schedule,
the used list scheduler dissociate from them since the DVS technique exploits
exactly these idle times. For a simple example consider the task set given in
Figure 4.9, mapped onto an architecture build out of two DVS-PEs. The task
priorities are given on the right side of each task. According to these priorities,
a static list scheduler can generate a feasible schedule, as shown in Figure 4.9.
It can be observed that the tasks and can be scaled only a small amount
until deadline is met. However, task can utilise the idleness before task

starts execution, and task can be scaled until the deadline is met. Let

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 73

Figure 4.8. Proposed EE-GLSA approach for energy-efficient schedules

us consider now the employment of a hole filling technique. In this case the list
scheduler would try in its last scheduling step to place task into the idle pe-

Algorithm: EE-GLSA
Input:

Output:

01:

02:

03:

04:

05:

06:
07:

08:

09:

10:

task graph TG
mapping and execution properties corresponding to
the mapping
timing and energy optimised schedule

Initialisation: Create initial population pool P of priority
strings, half randomly generated and half based on mobility.
Perform List Scheduling: Generates, for each member of
the solution pool, a schedule based on the corresponding
priority string.
a) Assign task priorities from the property string
b) Invoke list scheduler without hole filling
Perform Voltage Scaling: Invoke the generalised DVS tech-
nique, calculating supply voltages for each task executed on a
DVS-PE. This is done under the consideration of the indi-
vidual power dissipation of tasks.
Assign Fitness: Compute fitness of each individual in the
population pool.
a) Calculate timing penalty
b) Calculate energy based on the supply voltages
c) Derive fitness based on energy and timing penalty
Termination: If no improved individual (improve-
ment > 1%) has been produces for 10 generations, then
terminate. Otherwise, continue with step 06.
Ranking: Individuals are ranked according to their fitness.
Selection: According to the size of the generational overlap
select individuals for mating. High ranked individuals have a
high probability to be selected.
Mating: Produce two-point crossover between a pair of
selected individuals.
Mutation: Randomly change genes of individuals using a
dynamic mutation probability scheme, with exponential
decreasing probability during run-time.
Offspring insertion: Exchange low ranked individuals by
newly produced individuals with respect to the size of the
generational overlap. Continue with step 02.

74 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 4.9. Hole filling problem

riod between task and task This decision, however, is fatally wrong from
an energy reduction point of view, since the only available slack for all tasks
would be the time between the execution of task and the deadline leaving
not much headroom for voltage scaling. On the other hand, if the deadline
would be identical with deadline then the schedule displayed in Figure 4.9
would become infeasible and the schedule produced with hole filling would
represent a better choice. To avoid such a dilemma, the used list scheduler
solely makes scheduling decisions based on the task priorities, which are iter-
atively optimised. Therefore, the proposed EE-GLSA is capable of producing
both schedule variants discussed above, and it evaluates their suitability with
respect to timing and energy aspects to make an appropriate decision.

After the list scheduling has constructed a schedule (step 02), the algorithm
proceeds by passing the built schedules to PV-DVS algorithm of Chapter 3,
which identifies scaling voltages that minimise the energy dissipation (step 03).
Note that schedules which exceed hard deadline constraints are still scaled as
much as possible and are not excluded from the optimisation. This is done since
good solutions are likely to be found as result of transformations performed on
invalid configurations. However, a time violation penalty is applied in such
cases, as explained next. The scaled schedule is evaluated in terms of deadline
violations and energy dissipation including the DVS reductions. Based on this
evaluation, the fitness of each schedule candidate is calculated (step 04)
using the following equation:

where defines the set of all activities (tasks as well as commu-
nications) and represents the set of all hard deadline tasks. The first part

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 75

of the equation is used to calculate the total dynamic energy dissipation of all
activities Based upon the type of activity, the energy dissipation can be
calculated in the following way,

where and refer to the power dissipation and execution time of tasks
at nominal supply voltage, respectively. is the scaled supply voltage,
represents the set of all tasks mapped to DVS-PEs, and and denote the
power and execution time of communication activities. It should be noted that
the power dissipations and the execution times of the tasks depend on the found
scaling voltages which have been calculated using the PV-DVS algorithm
introduced in Chapter 3. The second part of the fitness function introduces a
penalty factor due to deadline violations of deadline tasks,

where and denote the start time and the execution time (possibly
scaled) of task and refers to the task deadline. represents the period
of the hyper task graph (least common multiplier of all task graph periods), used
to relate the deadline violation. Squaring has been applied in order to apply a
higher penalty to larger violations of imposed deadlines.

By guiding the optimisation with this equation, the search for schedules is
pushed into regions where low energy and feasible schedules are likely to be
found. The algorithm then checks the halting criterion, as mentioned above.
If the end of the optimisation has not been reached, the algorithm continues
(step 05) and the new priority candidates are ranked (step 06) and inserted into
the solution pool based on their fitness values. Low ranked individuals of the
pool are replaced (step 07) by new ones, which are generated through genetic
crossover (step 08) and mutation (step 09). The employed GA is of steady
state type, that is, not all of the individuals in the solution pool are replaced
with each iteration (step 10). Steady state GAs where used due to their perfor-
mance advantages compared to generational GAs, as indicated in [128]. The
generational gap was set to 50%, i.e., half of the individuals in the solution pool
survive unchanged in each generation. The crossover is carried out by means of
a random two-point crossover [64]. To avoid a premature convergence towards
suboptimal schedules, the idea of a dynamic mutation probability is leveraged
[57]. This approach gives the algorithm the additional feature and capability to
easily escape local minima in the beginning of the optimisation run. The mu-
tation probability follows the equation and is never allowed
to drop below 15%. denotes the current generation during the schedule op-
timisation. The generated offsprings are inserted into the population, resulting

76 SYSTEM-LEVEL DESIGN TECHNIQUES

in a new generation. At this point, the next iteration is invoked and so different
schedules are tried out.

4.1.4 Experimental Results: Schedule Optimisation
This section demonstrates through several benchmark experiments that the

genetic list scheduling algorithm EE-GLSA introduced in this chapter achieves
high energy savings, particularly when considering power variations during the
optimisation. The EE-GLSA has been implemented on a PentiumIII/750MHz
PC using a publicly available library of genetic algorithms [150], All reported
results represent average values that have been obtained over ten optimisation
runs. In addition to the benchmarks (a–c) described in Chapter 3, the experi-
ments conducted in this section also concern the benchmarks set used in [68].

Gruian’s and Kuchcinski’s task graphs [68] represent two sets (TG1 and
TG2) of 30 randomly generated, communicating tasks with tight deadlines
(determined by a critical path scheduling algorithm). These graphs show a
high degree of parallelism and are mapped to architectures built of 3 or 10
identical DVS-PEs, assuming constant power consumption. These PEs are
multi-voltage processor able to run at 3.3V, 2.5V, 1.7V, and 0.9V, while
the threshold voltage is 0.4V.

The following experiments are split into two sections. The first section con-
centrates on experiments that highlight the importance of considering power
variations during scheduling in order to increase the energy-efficiency. While
the second section compares the genetic algorithm based iterative schedule
optimisation with constructive list scheduling techniques.

Power Variation Experiments
As demonstrated in the motivational scheduling example at the beginning of this
section, power variations can have a significant influence on the suitability of a
schedule when DVS is applied. This section assesses this influence through the
usage of several benchmarks experiments. For this purpose Table 4.2 compares
two different approaches; both are based on the same genetic list scheduling
technique, however, the first approach considers the fixed power model, while
the second employs the power variation model. The table shows for both ap-
proaches the achieved energy reductions and computational overheads when
applied to the benchmark set tgff. The achieved energy reductions using the
fixed power model varied between 1.35% in the case of tgff6 and 51.89% in
the case of tgff3. However, in all cases the energy could be further reduced
when considering the power variations using PV-DVS. In these cases the reduc-
tions varied between 1.60% (tgff6) and 69.21% (tgff3). Accordingly, up to
17.32% higher savings could be achieved solely by reordering the execution of
tasks and communications.

(d)

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 77

Table 4.2. Experimental results obtained using the fixed power model and the power variation
model during voltage selection; both integrated into a genetic list scheduling algorithm

Clearly, an advantage of the EVEN-DVS technique (fixed power model)
is its linear time complexity, when compared to the quadratic complexity of
the PV-DVS algorithm (power variation model). This is also reflected in the
reported optimisation time of Table 4.2. As it can be observed, the optimisation
times for the approach using a fixed power model varied from 0.12s in the case
of tgff1 to 1.19s in the case of tgff22. The optimisation times for the same
benchmarks optimised under the power variation model vary between 0.14s
(tgff1) and 21.25s (tgff22). It is a classical trade-off between optimisation
time and solution quality.

Comparison with Constructive List Scheduling Technique
In order to assess the quality of the new EE-GLSA technique to achieve high en-
ergy savings not only due to the consideration of the power variation model, this

78 SYSTEM-LEVEL DESIGN TECHNIQUES

section provides a comparison with constructive list scheduling techniques. The
first comparison of the EE-GLSA is against a mobility-based (i.e., performance-
driven) constructive list scheduling technique [158]. The results presented in
Table 3.4 (page 52) have been generated using a mobility-based list scheduling,
while the results Table 4.2 are based on the genetic list scheduling approach.
Hence, comparing the results of both tables is equivalent to a comparison be-
tween both scheduling approaches. Take, for instance, example tgff2. When
considering a constructive list scheduling based on mobility and a voltage scal-
ing based on PV-DVS, an energy reduction of 7.97% can be achieved (Column 7
in Table 3.4). Nevertheless, applying the genetic list scheduling approach com-
bined with PV-DVS, the energy is reduced by 26.61 % (Column 7 in Table 4.2).
Note, these savings are solely achieved through an improved execution order of
tasks and communications, since in both cases the same voltage scaling tech-
nique (PV-DVS) has been applied. Overall it can be observed that the genetic
list scheduling technique yields higher energy savings in most of the examples.
In fact, only in the case of benchmark tgff6 no further improvement could
be achieved through genetic list scheduling. This is due to the timing critical
execution of tasks, which offers no energy reduction potential. Certainly, the
GA based schedule optimisation introduces a computational overhead, which
results in a necessary trade-off between solution quality in terms of energy dis-
sipation and synthesis time. Nevertheless, the EE-GLSA can produce solution
of at least the same quality as the mobility-based approaches in the “same” time,
by placing a string with priorities based on the mobility criterion into the initial
population of the EE-GLSA.

To further confirm the quality of the EE-GLSA, it is next compared to the
DVS scheduling technique proposed by Gruian et al. [68]. This comparison
is carried out using the benchmark collections TG1 and TG2, which contain 60
task graph examples with tight deadlines. The individual graphs capture highly
parallel tasks with relatively few communications. Nevertheless, for experi-
mental purpose these benchmarks represent a valuable choice. The reported
energy reductions in [68] for these benchmarks are 28% and 13%. Tables 4.3
and 4.4 present the results obtained using the genetic list scheduling algorithm
EE-GLSA, which is driven by the PV-DVS algorithm.

The table separates both benchmark collections. Although the examples
do not allow the EE-GLSA approach to leverage power variations, since the
specified power values are constant, the achieved average energy reductions
for TG1 and TG2 are 41.16% and 18.82% (Column 5 and 11, last row), re-
spectively. This is an improvement of 13.16% and 5.82%, which indicates
the effectiveness of the proposed optimisation technique, even when using
constant power benchmark examples. However, since the results in [68] are
obtained using multi-voltage PEs rather than variable-voltage PEs, additional
experiments have been conducted, using the same discrete PE voltages

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 79

Table 4.3. Experimental results obtained using the generalised, DVS optimised scheduling
approach for benchmark example TG1

{0.9V, 1.7V, 2.5V, 3.3V}, while As outlined in Section 3.2.2, each
continously selected voltage (using the PV-DVS algorithm) can be split into
its two neighbouring discrete voltages considering the available voltages of the
multi-voltage PE. The corresponding run-times at each voltage are calculated
using the Equations (3.5) and (3.6). The results of the discrete voltage optimi-
sation are shown in Tables 4.3 and 4.4, see columns with the headings “Discrete
Reduc.”. For the two benchmark sets the achieved average energy reductions are

80 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 4.4. Experimental results obtained using the generalised, DVS optimised scheduling
approach for benchmark example TG2

37.61% and 15.83%, respectively, which represent improvements of 9.61 % and
2.83%. Note that these reductions were obtained on benchmarks which do not
show any power variations and so this optimisation feature of the proposed DVS
algorithm stays unexploited. The achieved improvements are due to the fact that
the proposed iterative GA based scheduling approach is able to explore a large
space of potentially low-energy schedules, as opposed to the constructive list
scheduling approach used in [68]. Regarding the computational times, Gruian

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 81

et al. reported average times for the 30-node task graphs of 10s to 120s (on
440MHz, UltraSparc IIi, 256MB Workstation), while the proposed algorithm
executes on average in 0.9s to 8.51s (on 750MHz, Pentium III PC, 128MB).
These longer execution times of the constructive technique can be explained by
the fact that the scheduling used in [68] has to re-schedule the tasks when no
feasible schedule is found, i.e., the task priorities are re-adjusted. Further, the
UltraSparch Workstation provides approximately 2–3 less computational power
compared to the PentiumIII PC according to SPECint performance evaluation
[7]. However, the optimisation times indicate an advantage of the presented
EE-GLSA technique.

In summary, this section has shown that significant improvements in terms of
energy savings can be made by optimising the execution order of tasks and com-
munications. In particular when compared to constructive techniques, the new
EE-GLSA can achieve higher energy savings due to the effective exploration
of the scheduling search space.

4.2 Optimisation of Task and Communication Mapping
Section 4.1 has shown that substantial energy savings (up to 17.32% were

observed) can be achieved through an schedule optimisation that improves the
execution order of tasks and communications not only towards performance
goals, but additionally towards the effective utilisation of dynamic voltage scal-
ing. Clearly, application mapping (Section 1.3.2) and activity scheduling (Sec-
tion 1.3.3) are two heavily interrelated co-synthesis steps. For instance, map-
ping parallel tasks onto a single processing element would necessitate to execute
these tasks one after the other (sequentially). On the other hand, mapping these
tasks to different processing elements would allow to execute the tasks in paral-
lel. This means that the mapping of tasks and communications has an important
influence on the schedulability as well as on the utilisation of DVS and hence
should be subject to optimisation from a timing and energy point of view. This
section introduces a novel two-step approach that aims to improve the mapping
towards these goals. Conceptually, the mapping approach separates the optimi-
sation of task and communication mapping, i.e., both assignments are carried
out in isolation of each other, as illustrated in Figure 4.1 (page 62). Correspond-
ingly, this section is divided into two sections. Section 4.2.1 introduces a task
mapping based on genetic algorithms that has been adapted to suit the particular
problem of optimising the design for the effective exploitation of the DVS-PEs.
Section 4.2.2 proposes a new method that extends the scheduling technique
outlined in Section 4.1 to a combined optimisation of communication mapping
and scheduling. Again, this technique aims at performance improvement as
well as DVS utilisation. Using these techniques, the influence of mapping on
the achievable energy savings through DVS is analysed in Section 4.2.3 for a
set of benchmark experiments.

82 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 4.10. Task mapping string describing the mapping of five tasks to an architecture

4.2.1 Genetic Task Mapping Algorithm
The task mapping step determines which PE carries out which task. Thereby,

it determines the execution time and power dissipation of a task at nominal sup-
ply voltage and further the area requirement in terms of bytes or gates, whether
a task is implemented as software or hardware. The goal of the mapping optimi-
sation step is to distribute the tasks among the processing elements that form the
distributed architecture, including the DVS-enabled PEs, such that the energy
dissipation is minimised and feasible designs in terms of timing behaviour and
area constraints are achieved. As mentioned in Section 2.4, task mapping has
been intensively researched over the last decade. And similar to the scheduling
problem, it belongs to the class of NP-hard problem [62]. That is, optimal
solution for realistic problem sizes may only be found through extremely com-
putational expensive processes. One effective way to address this problem is the
usage of genetic algorithms for task mapping [47, 49]. Nevertheless, previous
approaches did not consider the presence of DVS-PEs. In addition, as opposed
to the mapping approach introduced in [47, 49], where solely the mapping of
tasks is optimised by a GA, the approach presented in this book uses two in-
dependent GAs to find improved solutions for the mapping of communications
and tasks. This section focuses on task mapping.

In GA-based task mapping approaches, solution candidates (potential map-
pings) are encoded into mapping strings [49], as shown in Figure 4.10. Each
gene in these strings describes a mapping of a task to a processing element.
For instance, task in Figure 4.10 is mapped to PE0. Similarly to the genetic
algorithm used for the schedule optimisation (Section 4.1.1), the genetic task
mapping algorithm (EE-GTMA) evolves a population of possible mapping so-

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 83

Figure 4.11. Proposed EE-GTMA approach for energy-efficient task mappings

lutions towards high quality implementations. The genetic algorithm that is
employed to work on the task mapping strings is described in Figure 4.11.
As typical in all genetic algorithms, the EE-GTMA applies ranking, selection,
crossover, mutation, and offspring insertion in order to evolve an initial solu-
tion pool. The key feature of the EE-GTMA, however, is the invocation of

Algorithm: EE-GTMA
Input:

Output:

01:

02:

03:

04:

05:

06:
07:

08:

09:

10:

task graph TG
technology library (execution times, power dissipations)
allocated arcitecture
timing, area, and energy optimised mapping

Initialisation: Create initial population pool of mapping
strings, generated randomly
Perform Mapping: Generates, for each member of
the solution pool, a mapping based on the corresponding
mapping string. Specifices the task properties such as
execution time, power dissipation, etc.
Invoke EE-GLSA: Invoke the schedule optimisation
to, determine a suitable and energy efficient schedule for
the current task mapping.
Assign Fitness: Compute fitness of each individual in the
population pool.
a) Calculate area penalty
b) Derive fitness based on are penalty and the schedule fitness.
Termination: If no improved individual (improve-
ment > 1%) has been produces for 10 generations, then
terminate. Otherwise, continue.
Ranking: Individuals are ranked according to their fitness.
Selection: According to the size of the generational overlap
select individuals for mating. High ranked individuals have a
high probability to be selected.
Mating: Produce two-point crossover between a pair of
selected individuals.
Mutation: Randomly change genes of individuals using a
dynamic mutation probability scheme, with exponential
decreasing probability during run-time.
Offspring insertion: Exchange low ranked individuals by
newly produced individuals with respect to the size of the
generational overlap. Continue with step 02.

84 SYSTEM-LEVEL DESIGN TECHNIQUES

the genetic list scheduling algorithm (EE-GLSA) for each mapping candidate,
which allows to calculate parts of the fitness function that guides the optimisa-
tion. More precisely, the scheduling fitness is used within the task mapping
fitness as shown in the following equation:

where is the schedule fitness (Equation (4.1), Section 4.1.3) based on the
DVS reduced energy dissipation and a time penalty as outlined in Section 4.1.3.

assigns an area penalty for each PE exceeding its area constraints as given
in Equation (4.5). The used area is denoted and the maximal available
area is represented by (either as memory or silicon area depending on the
implementation in SW or HW). If the available area is not exceeded, it is
not necessary to assign an area violation penalty for the particular processing
element hence, is multiplied by one. On the other hand, if the area
constraint is exceeded, the used area and the available area are related
and multiplied by a constant which allows to adjust the aggressiveness of
the penalty. Through extensive experimentations, a value of 0.02 was found
to be a good choice for the constant which was sufficiently high to avoid
infeasible results at the end of the mapping optimisation. However, this value
for is still low enough to allow infeasible solutions to survive sometimes in
order to increase the population diversity and avoid a premature convergence of
the GA towards solutions of unnecessary low quality. In this way, it is possible
to stimulate the placement of functionality onto the distributed PEs such that
energy is minimised, while timing and area constraints are respected. The
parameters of the GA for the task mapping were set as follows: The population
size was set to 50, the minimal dynamic mutation probability was adjusted to
5%, the generational gap comprises 20%, and the initial population pool was
filled with random mappings.

4.2.2 Combined Scheduling and Communication Mapping
The mapping approach in the previous section is used for the assignment of

tasks to the processing elements only. However, communication issues have a
great impact on the timing behaviour of the application and therefore should
be considered carefully during the design space exploration [50, 88, 126], in
order to find energy-efficient systems. One important decision that has been
taken in this regard was the separation of communication mapping from the task
mapping within the synthesis approach, i.e., communication and task mapping

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 85

Figure 4.12. Combined optimisation of task and communication mapping

are carried out in two separate optimisation steps (see Figure 4.1). The following
example illustrates the reasons behind this decision.

Example
The three tasks and two communications of the task graph shown in Fig-
ure 4.12(a) need to be mapped onto a target architecture consisting of three
PEs, connected by four CLs. The string shown in Figure 4.12(b) combines
tasks mapping and communication mapping into one
representation. This mapping represents a valid solution since communica-
tion between the tasks and is assigned to CL1, which connects
the processing elements that accommodate tasks and In a similar way,
the communication is mapped onto a communication link (CL0) that in-
terconnets the processing elements of task and task Let us consider a
certain genetic operation which transforms the valid mapping string shown in
Figure 4.12(b) to the one in Figure 4.12(c). It can be observed that the mapping
of the tasks and has been modified, while the communication mapping
stays unchanged. A quick check upon this mapping indicates that this assign-
ment of activities represents an invalid solution. Consider, for example, the
communication between task and Although the tasks are mapped
onto PE0 and PE2, which are solely connected through CL0, the communica-
tion is mapped to CL1. Hence, this mapping is invalid (if it is considered that
only direct communications are allowed, i.e., communications without routing
over intermediate PEs). Due to this reason, a combined task and communi-
cation mapping approach would produce a high number of invalid solutions
during the GA based optimisation, which, in turn, would have a negative effect
on the convergence of the population towards high quality solutions. To over-
come this problem, the proposed mapping approach explicitly separates task
and communication mapping. In précis, the introduced communication map-

86 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 4.13. A combined priority and communication mapping string

ping technique is carried out in conjunction with the scheduling optimisation
within the innermost loop of the proposed synthesis approach (see Figure 4.1).
Hence, for each task mapping candidate, the scheduling and communication
mapping are simultaneously optimised. In this way it is possible to avoid in-
valid solutions, since all possible mappings of communication activities onto
the communication links are statically known for a particular task mapping. To
clarify this consider again Figure 4.13. If the tasks and for instance, are
mapped to PE1 and PE2, respectively, then the communication can only be
mapped onto CL2 or CL3. Hence, during the optimisation of the communica-
tion mapping it is possible to restrict the search to such feasible communication
links. The proposed communication mapping, described next, takes advantage
of this information to ensure that only valid solutions are produced. Thereby,
the search space is restricted to structurally viable solutions only, decreasing
significantly the synthesis run-time.

As mentioned above, the presented communication mapping optimisation
is carried out in parallel with the schedule optimisation. To explain this strat-
egy consider the extended string representation shown in Figure 4.13, which
encodes both a possible schedule and a communication mapping candidate.
It can be observed that this string is divided into priority and communica-
tion mapping genes. A list scheduler determines an execution order based on
the encoded priorities, whilst the mapping of communication activities onto
the interconnecting links is given by the communication mapping genes. The
combined string representation allows the concurrent optimisation of priorities
and communication mappings, using a single genetic algorithm. However, it
necessitates a specialised genetic mutation, which operates on the two string
parts without interference, i.e., random modifications on priorities need to be
considered differently than the modifications on the communication mappings.

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 87

On the other hand, standard crossover methods can be directly applied without
worrying about feasibility, since the crossover between two strings maintains
spatial locality, i.e., priority genes are not mixed with the mapping strings.
Nevertheless, during initialisation and mutation of the communication map-
ping genes only valid values, which result in feasible communication mapping
solutions, are allowed. This is not hard to achieve due to the fact that the task
mapping precedes the communication mapping (scheduling and communica-
tion mapping are carried out in the innermost loop of the synthesis). Thereby,
for every communicating pair of tasks the viable CLs are unambiguously speci-
fied. Therefore, it is possible to generate random initial chromosomes (random
in the sense that a random choice is taken among the possible CLs) that assure
proper communication mappings. Similarly, the mutation operator chooses
randomly among the valid possibilities only. In order to keep the optimisation
time low, the communication mapping string is dynamically adapted to the par-
ticular task mapping, as the number of inter-PE communications can changes
for each potential task mapping. Thereby, the amount of genes in the mapping
string is kept at minimum, avoiding needlessly high synthesis times. Of course,
the valid values of each gene change also dynamically in accordance to the
task mapping. Note that the presented communication mapping optimisation
improves both the timing behaviour as well as the power consumption, since
the guiding fitness (Equation (4.1)) accounts for both.

The pseudo code of the combined scheduling and communication mapping
algorithm, called EE-GLSCMA, is shown in Figure 4.14, an extended version
of the EE-GLSA algorithm described in Figure 4.8 (page 73). The following
modifications can be identified: In Step 01, the proposed combined optimisation
of communication mapping and scheduling finds, for all data transfers between
tasks, the feasible communication links. In addition to the initial priorities,
Step 02 needs to generate random yet feasible communication mappings for the
start of the optimisation. During Step 03, which performs the list scheduling, the
communication properties are calculated, in order to allow for the consideration
of contention over the CLs. Finally, in Step 10, a specialised mutation is carried
out, in order to avoid creation of invalid strings.

88 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 4.14. Proposed EE-GLSCMA approach for combined optimisation of energy-efficient
schedules and communication mappings

Algorithm: EE-GLSCMA
Input:

Output:

01:

02:

03:

04:

05:

06:

07:
08:

09:
10:

11:

task graph TG
task mapping and, correspondingly, the execution properties
timing and energy optimised schedule
timing and energy optimised communication mapping

Find Feasible Communication Mappings: Identify possible mappings
of communication events to links, depending on the given task mapping.
Initialisation: Create initial population pool P of combined
priority and communication mapping strings. Starting priorities are half
randomly generated and half based on mobility, while initial, feasible
communication mappings are randomly created.
Perform List Scheduling: Generates, for each member of the solution
pool, a schedule based on the corresponding priority string.
a) Map communication to links
b) Assign task priorities from the property string
c) Invoke list scheduler without hole filling
Perform Voltage Scaling: Invoke the generalised DVS technique,
calculating supply voltages for each task executed on a DVS-PE. This is
done under the consideration of the individual power dissipation of tasks.
Assign Fitness: Compute fitness of each individual in the solution pool.
a) Calculate timing penalty
b) Calculate energy based on the supply voltages
c) Derive fitness based on energy and timing penalty
Termination: If no improved individual (improvement > 1%) has been
produces for 10 generations, then terminate.
Otherwise, continue with step 07.
Ranking: Individuals are ranked according to their fitness.
Selection: According to the size of the generational overlap select
individuals for mating. High ranked individuals have a high probability
to be selected.
Mating: Two-point crossover between a pair of selected individuals.
Mutation: Randomly change genes of individuals using a dynamic
mutation probability scheme, with exponential decreasing probability
during run-time. Mutation of communication mappings are randomly
selected out of feasible assignments, depending on the task mapping.
Offspring insertion: Exchange low ranked individuals by newly
produced individuals with respect to the size of the generational overlap.
Continue with step 03.

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 89

4.2.3 Experimental Results: Mapping Optimisation
The experimental results in this section analyse the effect of task and com-

munication mapping on the achievable energy reductions through DVS. To
evaluate this influence three basic concepts are compared:

CSE (Constructive Scheduling with fixed power DVS):
Within this approach, DVS is tackled under the fixed power model (i.e., no
power variations are considered). Scheduling is carried out using a mobility-
based constructive list scheduling. Communication mapping is based on a
heuristic method that assigns communications to the first available CL. The
task mapping is carried out using the genetic task mapping algorithm of
Section 4.2.1.

DLSP (Dynamic Level Scheduling with power variation DVS):
DLSP is based on a constructive list scheduling which dynamically re-
calculates task priorities during the schedule construction [138]. The prior-
ities of tasks are given by the dynamic level, which depends on the longest
path of the activity and the earliest start time. The priorities are used for a
combined task mapping and scheduling. Thus, this approach is thoroughly
of constructive nature. This scheduling and mapping approach corresponds
to the one used in [20]. The so produced schedules are scaled using the
PV-DVS algorithm introduced in Chapter 3.

ICMSP (Iterative Combined Mapping and Scheduling with PV-DVS):
This approach corresponds to the techniques and algorithms proposed in
this book. That is, voltage scaling is performed by PV-DVS (Section 3.2.1),
which considers the power variation model. Scheduling and communication
mapping are based on the combined genetic algorithm EE-GLSCMA (Sec-
tion 4.2.2). The task mapping is optimised using the genetic task mapping
algorithm EE-GTMA (Section 4.2.1).

To ease the following discussion, Figure 4.15 provides a short overview of these
optimisation concepts for reference purpose. All experimental results presented
in this section are based on the same four benchmark sets (a–d) that have already
been introduced in Sections 3.3 and 4.1. The presented results were obtained
by running the optimisation process ten times and averaging the outcomes.
The experiments are subdivided into two sections. Section 4.2.3.1 compares
the CSE approach with ICMSP technique, while Section 4.2.3.2 assesses the
optimisation potentials of DLSP with respect to ICMSP.

4.2.3.1 Comparison between CSE and ICMSP

The first experiments give a comparison between the CSE approach and the
ICMSP approach. Table 4.5 shows this comparison for the benchmark sets

90 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 4.15. Three scheduling and mapping concepts

Table 4.5. Mapping optimisation with and without DVS optimised scheduling using tgff and
hou benchmarks

tgff and Hou. The first column gives the benchmark names. The second
column shows the nominal energy dissipations. These values were produced
using the genetic task mapping algorithm (EE-GTMA) in combination with the
genetic scheduling and communication mapping algorithm (EE-GLSCMA),

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 91

however, without using dynamic voltage scaling. Thus, all tasks are executed
at nominal supply voltage. The third column gives the computational times for
these optimisations. The nominal energy values are used as base for a com-
parison of the CSE and ICMSP approaches. The achieved results of the CSE
approach are shown in Columns 4–6, while the outcomes of ICMSP are given
in Columns 7–9. The last column provides the achieved reduction factors,
comparing CSE and ICMSP. Consider, for instance, the benchmark example
tgff4, which has a nominal energy dissipation of 63924µJ. This solution was
found after optimising the application mapping and scheduling for 24.15s. The
energy dissipation of the same example is reduced to 15743µJ using the CSE
approach, a reduction by 75.37%. This has been achieved in smaller run-time,
although the CSE additionally account for DVS. The lower optimisation time
can be explained by the fact that a quick constructive scheduling technique is
used. Furthermore, EVEN-DVS (fixed power model) does not significantly in-
crease the optimisation time since it can be performed with linear computational
complexity. Nevertheless, it is possible to further increase the energy savings
using the ICMSP approach, which considers the power variation model as well
as an iterative optimisation of the scheduling and mapping towards DVS.

Using ICMSP the energy consumption of example tgff4 is reduced to
10817µJ, a reduction by 83.08%. Due to the iterative scheduling and the
quadratic complexity of PV-DVS, the optimisation time increases to 290.10s.
Comparing the achieved reductions of the constructive-based CSE approach
(75.37%) with the introduced ICMSP approach (83.08%), a reduction factor
of 83.08/75.37 = 1.10 can be calculated. Observing the remaining reduction
factors given in Table 4.5, it can be seen that ICMSP (based on the technique
proposed in this book) always results in lower energy dissipations than the
CSE approach (based on traditional scheduling techniques and the fixed power
model). These reductions are mainly achieved due to two reasons:

(a) The schedule solution space can be more thoroughly search by an iterative
scheduling technique.

(b) Considering the power variations allows a more accurate energy estimation
to guide the optimisation process.

The run-times for the CSE technique varied between 1.91s (tgff1) and 172.38s
(tgff22) for task graphs with up to 100 nodes. The ICMSP approach optimised
all the examples in 3.42s (hou_clust) to 14050.26s (tgff22). Clearly, a trade-
off between run-time and quality.

Timing Behaviour Improvements
In addition to the schedule discussions given in Section 4.1, the following ob-
servations about the scheduling optimisation can be made. The scheduling
optimisation does not only significantly reduce the dissipated energy, but also

92 SYSTEM-LEVEL DESIGN TECHNIQUES

improves the timing behaviour, leading to feasible implementations where con-
structive techniques might fail. This is of great importance since high quality
solutions are likely to be found in design space regions where infeasible and
feasible solutions are spatially placed closely together. Making a wrong de-
cision might involve a more costly implementation of the system. To clarify
this, consider the results obtained with the benchmark set TG1 from Gruian et
al. [68], as shown in Table 4.6. Scheduling the system tasks based on a con-

Table 4.6. Mapping optimisation of the benchmark set TG1 using NO-DVS (Nominal), EVEN-
DVS, and PV-DVS

structive list scheduling heuristic (mobility-driven) produces a single solution,
which might be feasible or infeasible. Consider, for example, benchmark r000.
In the case of this benchmark the constructive scheduling attempt fails and the
implementation is marked infeasible (Column 4, “unsolved”). Thus, making
it necessary to increase the performance of the allocated system for the given
mapping. On the other hand, the proposed iterative GA-based list scheduling
technique is able to improve infeasible schedules by providing feedback to the
optimisation process and therefore feasible schedules might be found, as in the

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 93

case of the task graph example r000 (Column 7). This effect is likely to appear
in the presence of tight deadline specifications, such as the benchmark set TG1.
It can be observed that for 18 out of 30 examples no feasible mapping could be
found when using a mobility-driven scheduling algorithm. Nevertheless, using
the genetic list scheduling approach it was possible to find feasible mappings
for all task graphs of TG1, with energy reductions of up to 62.79% (benchmark
r025). Compared to the feasible mappings generated using the CSE technique,
energy reductions of up to 7.11 times could be achieved. This higher quality
results require longer optimisation times.

4.2.3.2 Comparison between DLSP and ICMSP

To further confirm the ability of the proposed approach to optimise the map-
ping as well as the scheduling towards an effective utilisation of DVS, it is
compared next with mappings and schedules produced by a dynamic level
scheduling algorithm (DLS) [138]. This scheduling technique can be consid-
ered to be more sophisticated than “simple” mobility list scheduling approaches,
since it dynamically re-calculates the task priorities after each schedule deci-
sion. Table 4.7 gives this comparison between DLSP and ICMSP. The first

Table 4.7. Comparison between DLS algorithm and the proposed scheduling and mapping
approach using Bambha’s benchmarks [20]

and the second column show the benchmark names and the nominal energy
consumption, respectively. The third and fourth column represent the results
obtained by the DLSP 3, while the fifth and the sixth column correspond to
the proposed ICMSP approach. Accordingly, column seven gives the reduction
factors when comparing DLSP with ICMSP. Examining the results, it can be
seen that ICMSP was able to reduce the dissipated energy of 4 out of 5 examples
by up to 39.87% (59.50% – 19.63%, karp10) equivalent to a reduction factor
of 3.07. Only in the case of meas the dissipated energy remained the constant.
This can be explained by the highly serialised graph structure of this task graph,
which constrains the scheduling order and hence the potential to optimise the
schedule. Furthermore, the serialised execution restricts the application paral-
lelism and the used DVS-PEs are of identical types, thus, the task mapping does

94 SYSTEM-LEVEL DESIGN TECHNIQUES

not influence the scheduling results. Nevertheless, for fft1, fft3, karp10,
and qmf4, which show more parallelism, the introduced synthesis approach
(ICMSP) outperforms the DLS-based scheduling in terms of energy savings by
up to 3.07 times (karp10: 19.63% compared to 59.50%). It should be noted,
both DLSP as well as ICMSP use dynamic voltage scaling under the power vari-
ation model. Hence, the reported saving are solely introduced by an improve
application mapping and activity scheduling. Certainly, due the constructive
nature of DLS, it surpasses the iterative improvement ICMSP approach in terms
of optimisation time. For all examples the DLS run-time is below an optimi-
sation time of 1s, while the presented technique shows run-times between 8.5
and 1144.7s. However, an advantage of the proposed approach is the possi-
bility to initialise the mappings and schedules with a pre-passed mapping and
scheduling based on DLS. This ensures that solutions of at least DLS quality are
obtained in the first generation of the GA optimisation, that is, in an “identical”
optimisation time. Such an initial solution pool could then be further optimised
iteratively. In this way, the system designer can easily exploit the freedom to
trade off synthesis time and solution quality.

Summary

This section has analysed the effect of application mapping under different
constellations of scheduling and voltage scaling techniques. The conducted
experiments have shown that substantial energy saving can be achieved by the
iterative techniques introduced in this book, when compared to constructive
scheduling and mapping approaches [138, 158], which have been used in pre-
vious work on energy minimisation through DVS [20, 99]. Furthermore, the
experiments indicate an advantage of the proposed techniques over constructive
approaches also in terms of schedulability in the presence of tasks with tight
deadlines. The results reinforce the importance of a thorough exploration of
the mapping and scheduling solution space. Clearly, the cost for these better
results is higher computational time.

4.3 Optimisation of Allocation
Sections 4.1 and 4.2 have introduced techniques and algorithms for the opti-

misation of activity scheduling and application mapping, respectively. As out-
lined in Section 1.3, the overall goal of the co-synthesis process is to support the
designer in finding the “most” suitable target architecture, i.e., the optimisation
of the architecture allocation. In the proposed system-level design approach,
this step is user-driven and thereby based on the knowledge and experience of
the designer. It is assumed that the designer has predefined an architecture and
the voltage scaling, scheduling, and mapping techniques help him to evaluate
the quality of the allocation in terms of energy dissipation, cost, and feasibil-
ity. If an architecture does not prove to be satisfactory, the designer makes the

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 95

necessary changes and evaluates again. In this way, it is also possible to trade
off the different design goals and hence achieve multiple design alternatives.
Similarly to the scheduling and mapping steps, the allocation of components
has an influence on the usability of DVS. For example, it might be beneficial
to reduce the workload on the system PEs by introducing a new PE or by re-
allocating faster PEs. And thereby it could be possible to increase the deadline
slacks in the system schedules and hence exploit them using DVS, resulting in
higher dynamic energy reductions, while increasing the product cost and the
static power consumption. Clearly, this optimisation is based on the astuteness
of the designer. The following experiment demonstrates the importance of the
architecture allocation using a real-world example.

4.3.1 Experimental Results: Component Allocation
In order to assess the energy reduction capability of the proposed synthe-

sis approach in terms of real-world applicability, this set of experiments are
concerned with a real-life optical flow detection (OFD) application. This appli-
cation is a sub-system of an autonomous model helicopter for traffic monitoring
purpose [12,68], and it consists of 32 tasks. In its current implementation the
OFD algorithm runs on two ADSP-21061L DSPs, with an average current of
760mA at 3.3V, hence, an average power dissipation of approximately 2.52W.
Due to the stringent power budget on board of the helicopter, including appli-
cation critical sub-systems, it is necessary to keep the overall power dissipation
under a certain limit. To reduce the power consumption to a minimal amount,
DVS seems predestined, since the OFD algorithm shows an unnecessary high
performance (12.5 frames of 78x120 pixels per second). However, a repetition
rate of 6.25 frames per second is sufficient (at certain operational heights) to
ensure correct flow detection, allowing to relax the system constraints. For
experimental purpose, a hypothetical extension of the DSPs towards DVS ca-
pability is considered. It is taken into account that such an extension has an
influence on the static power dissipated by the digital circuits, and therefore the
static power is increased by 10%.

In the first part of this experiment the application constraints are kept fixed,
i.e., the OFD algorithm needs to perform with a repetition rate of 12.5Hz
(equivalent to the current implementation). In order to increase the usage of
the application parallelism, three different architectures are used, which are
built out of three to five DVS-DSPs and connected via a shared bus. In this
way the OFD algorithm can be performed faster, i.e., additional system slack
is introduced, which is exploitable by DVS. Table 4.8 reports on the findings.
The first row represents the current implementation of the OFD algorithm, i.e.,
running on an architecture consisting of two DSPs without DVS technology.
This implementation shows a total average power dissipation of 2.52W. Now,
consider the architectures with three to five DVS-enabled DSPs. In accordance

96 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 4.8. Increasing architectural parallelism to allow voltage scaling of the OFD algorithm

to the number of allocated PEs, the static power consumption increases. How-
ever, the increased number of PEs allows to exploit the application parallelism
more effectively, which, in turn, allows a faster execution of the OFD algo-
rithm. This results in slack time, usable by the DVS-PEs to lower the dynamic
power dissipation. As it can be observed from Table 4.8, all implementations
using DVS-DSPs show a reduction in total power consumption (sum of static
and dynamic power consumption) of up to 24.6%. Note that this reduction
does not necessitate any performance degradation, while the cost of the system
increases.

As mentioned before, the current implementation of the OFD algorithm
shows an unnecessary high performance and it is therefore possible to relax
the system constraints. Hence, in the following experiment, the repetition rate
is reduced from 12.5Hz to 6.25Hz, i.e., an execution at half speed. This
performance is still high enough to allow a correct flow detection. The results
of this investigation are shown in Table 4.9. Observing the results shows that

Table 4.9. Relaxing the performance constraints of the OFD algorithm

for all given architectures the power dissipation could be reduced significantly,
by up to 44.4% when compared to a non-DVS implementation (first row in
Table 4.9). It is interesting to observe that the power consumption of the nominal
task execution is reduced as well. This is due to the fact that the two DSPs are
considered to consume no dynamic power when no computations are performed
(through clock-gating). Therefore, for half of the operational time the DSPs
dissipate no dynamic power. However, among all implementation alternatives

Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling 97

Figure 4.16. Nine different implementation possibilities of the OFD algorithm

the architecture composed out of two DVS-PEs (second row in Table 4.9) is the
favourite, since it achieves the highest energy savings at a low cost. Its favourite
position comes from the fact that with each additionally allocated PE the static
power consumption increases, while the achievable dynamic energy reductions
decrease (caused by limited parallelism within the application). Again, this
shows how important an accurate design space exploration is when synthesising
DVS-enabled embedded systems.

The power dissipations of all synthesised OFD systems are additionally
shown in Figure 4.16. The depicted energy values correspond to the total
energy dissipation, i.e., static as well as dynamic power dissipation are consid-
ered. Observing this chart clearly indicates the advantage of an OFD system
using a two DVS-DSP implementation at a reduced performance rate of 6.25Hz.

4.4 Concluding Remarks
This chapter has introduced new methods for the activity scheduling and the

application mapping of energy-efficient distributed heterogeneous embedded
systems. A novel two-step iterative co-synthesis approaches that separates task
mapping from a combined scheduling and communication mapping optimi-
sation has been developed and applied to a set of benchmarks examples. By
separating the two optimisation, the search space is pruned to structurally fea-
sible solutions only, hence, potentially reducing the required synthesis times.
It has been shown that the introduced methods not only achieve substantially

98 SYSTEM-LEVEL DESIGN TECHNIQUES

higher energy savings when compared to constructive techniques (up to 39.87%
for benchmark karp10), but additionally improve the schedulability. The prac-
ticality of the proposed scheduling and mapping techniques has been validated
using a real-world OFD application, for which the energy consumption could
be reduced by 24.6% without degradation in performance and by 44.4% when
a reduction in performance can be tolerated. The cost for these solutions of
improved quality are longer synthesis times.

Notes
For distributed systems consisting of several processing elements and com-
munication links, a ready list is introduced for each component. Furthermore,
priorities are additionally assigned to communications.
Energy-Efficient Genetic List Scheduling Algorithm
The DLSP results are identical to the results presented in Table 3.5 (Sec-
tion 3.3.1).

1

2
3

Chapter 5

ENERGY-EFFICIENT MULTI-MODE
EMBEDDED SYSTEMS

Chapter 3 has shown how the power variation model helps to reduce the en-
ergy consumption of DVS-enabled embedded systems during voltage scaling.
Furthermore, it was shown in Chapter 4 how an appropriate application map-
ping and activity scheduling enables an effective utilisation of DVS, in order to
save energy. These techniques and algorithms have addressed the optimisation
of embedded systems that perform one single application, such as a standalone
MP3 decoder or an optical flow detection (OFD). Nevertheless, one key charac-
teristic of many current and emerging embedded systems is their need to work
across a set of different interacting applications and operational modes. For
instance, modern mobile phones often integrate not solely the functionality re-
quired for communication purpose, but additionally integrate applications like
digital cameras, games, and complex multimedia functions (MP3 players and
video decoders) into the same single device. In this book, such embedded sys-
tems are referred to as multi-mode embedded systems. This chapter introduces a
novel co-synthesis methodology for the design of energy-efficient multi-mode
embedded systems. Starting from a specification model that captures both
mode interaction and functionality, the developed co-synthesis technique maps
the application under consideration of mode execution probabilities to a hetero-
geneous architecture with the aim to reduce the energy consumption through
an appropriate resource sharing between tasks. The main principle by which
the co-synthesis methodology achieves energy-efficiency is an implementation
trade-off between the different operational modes. In general, modes with high
execution probability should be implemented more energy efficient (e.g., by
moving more tasks to hardware) than modes with a low execution probability.
Nonetheless, the implementation of modes is heavily interrelated, due to the
fact that different modes share the same resources (architecture). For example,
mapping an energy-critical task of a highly active mode into energy-efficient

99

100 SYSTEM-LEVEL DESIGN TECHNIQUES

hardware might prohibit to implement a timing-critical task into hardware due to
the restricted hardware area (see motivational example in Section 5.2). Clearly,
a well balanced implementation of the operational modes is vital for a good sys-
tem design. In addition, the co-synthesis approach further reduces the energy
dissipation by adapting the system performance to the particular needs of the
active mode, using dynamic voltage scaling as well as component shutdown.
Furthermore, the voltage scaling method of Chapter 3 is extended to account
for hardware PEs that are capable of executing tasks in parallel, however, rely
on a single scalable supply voltage source.

The rest of this chapter is organised as follows. Preliminaries, regarding
the specification and the architectural models are given in Section 5.1. In Sec-
tion 5.2, the problem addressed in this chapter is motivated through illustrative
examples. Section 5.3 surveys relevant previous work regarding multi-mode
embedded system. A formulation of the problems at hand is provided in Sec-
tion 5.4. Section 5.5 proposes a novel synthesis approach, in order to tackle the
identified problems. Extensive experimental results, including a smart phone
example, are given in Section 5.6. Finally, concluding remarks are expressed
in Section 5.7.

5.1 Preliminaries
This section introduces the functional specification model (Section 5.1.1)

and the architectural model (Section 5.1.2), which are fundamental to the co-
synthesis framework outlined in this chapter.

5.1.1 Functional Specification of Multi-Mode Systems
The abstract model used for the specification of multi-mode embedded sys-

tems consists of two parts. In précis, it is based on a combination of finite
state machines and task graphs, capturing both the interaction between differ-
ent operational modes as well as the functionality of each individual mode.
Structurally, each node in the finite state machine represents an operational
mode and further contains the task graphs which are active during this mode.
The following two sections introduce this model, which is henceforth referred
to as operational mode state machine (OMSM).

Top-level Finite State Machine

In this chapter, it is considered that an application is given as a directed cyclic
graph which represents a finite state machine. Within this top-level
model, each node refers to an operational mode and each edge
specifies a possible transition between two different modes. If the system
undergoes a change from mode to mode where the transition
time associated with the transition edge has to be met. At

Energy-Efficient Multi-Mode Embedded Systems 101

Figure 5.1. Example operational mode state machine of a smart phone

any given time there is only one active mode, i.e., the modes execute mutually
exclusive. To exemplify the proposed model consider Figure 5.1. This figure
shows the operational mode state machine for a smart phone example with
eight different modes. A possible activation scenario could look like this:
When switched on, the phone initialises into Network Search mode. The
system stays in this mode until a suitable network has been found. Upon
finding a network the phone undergoes a mode change to Radio Link Control
(RLC). In this mode it maintains the connection to the network by handling
cell hand-overs, radio link failure responses, and adaptive RF power control.
An incoming phone call necessitates to switch the system into GSM codec +
RLC mode. This mode is responsible for speech encoding and decoding, while
simultaneously maintaining network connectivity. Similarly, the remaining
modes have different functionalities and are activated upon mode change events.
Such events originate upon user requests (e.g. MP3-player activation) or are
initiated by the system itself (e.g. loss of network connection necessitates to
switch the system into network search mode). Furthermore, based on the
key observation that many multi-mode systems spend their operational time
unevenly in each of the modes, an execution probability is associated with
each operational mode i.e., it is known what percentage of the operational
time the device spends in each mode. For instance, in accordance to the typical
values given in Figure 5.1, the smart-phone stays 74% of this operational time
in Radio Link Control (RLC) mode, 9% in GSM codec + RLC mode, and

102 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 5.2. Relation between OMSM and individual task graph specifications

1% in Network Search mode. The remaining 16% of the operation time are
associated with the remaining modes. In practice the mode probabilities vary
from user to user, depending on the personal usage behaviour. Nevertheless, it is
possible to derive an average activation profile based on statistical information
collected from several different users. Taking this information into account
will prove to be important when designing systems with a prolonged battery
lifetime.

It is interesting to note that different operational modes do not necessarily
correspond to different functionalities of the system. For example, alternative
modes can be used to model the same functionality under different working
conditions (such as different workloads). For instance, in order to account
for variations in the wireless channel quality, we could exchange the GSM
voice transcoder mode in Figure 5.1 (a) with three transcoder schemes, each
responsible for the coding at a different signal-to-interference ratio (SIR) on
the channel. During run-time the appropriate transcoder scheme would be
selectively activated, depending on the actual channel quality.

Functional Specification of Individual Modes

The functional specification of each operational mode in the top-level fi-
nite state machine is expressed by a task graph This relation is shown
in Figure 5.2. The task graph model was introduced in Chapter 1, Section 1.2.1.
However, due to some particularities concerning multi-mode systems, the fol-
lowing outlines the exact model: Each node in a task graph represents a
task, i.e., an atomic unit of functionality that needs to be executed without pre-
emption. The level of granularity is coarse, i.e., tasks refer to functions such as
Huffman decoder, de-quantizer, FFT, IDCT, etc. Therefore, each task is further
associated with a task type A distinc-

Energy-Efficient Multi-Mode Embedded Systems 103

Figure 5.3. Distributed Architectural Model

tive feature of multi-mode systems is that task type sets of different
modes can intersect, i.e., tasks of identical type can share the same
hardware resource (inter-mode sharing). Resource sharing is also possible for
multiple tasks of identical type that are found in a single mode (intra-mode shar-
ing), however, due to task communalities among different modes, the chances to
share resources are increased. Edges in the task graph refer to precedence
constraints and data dependencies between the computational tasks, i.e., if two
tasks, and are connected by an edge, then task must be finished and
transfer data to task before can be executed. A feasible implementation
of a single mode needs to respect all task deadlines task graph period
and precedence relations.

5.1.2 Architectural Model and System Implementation
Similar to the techniques introduced in the Chapters 3 and 4, the proposed

system-level synthesis approach targets distributed architectures that possibly
consist of several heterogeneous processing elements (PEs), such as general-
purpose processors (GPPs), ASIPs, ASICs, and FPGAs. These components are
connected through an infrastructure of communication links (CLs). A directed
graph captures such an architecture, where nodes and edges

denote PEs and CLs, respectively. Figure 5.3 shows an architecture ex-
ample. Since each task might have multiple implementation alternatives, it can
be potentially mapped onto several different PEs that are capable of performing
this type of task. Tasks mapped to software-programmable components (i.e.,
GPP or ASIP) are placed into local memory. However, if a task is mapped to a
hardware component (i.e., ASIC or FPGA), a core for this task type needs to be
allocated. A feasible solution needs to obey the imposed area constraints, i.e.,
only a restricted number of cores can be implemented on hardware components.
The subdivision of hardware components (ASICs and FPGAs) into hardware

104 SYSTEM-LEVEL DESIGN TECHNIQUES

cores is shown in Figure 5.3. Each core is capable of performing a single task of
type at a time. Tasks assigned to GPPs or ASIPs (software tasks) need to
be sequenced, whilst the tasks mapped onto FPGAs and ASICs (hardware tasks)
can be performed in parallel if the necessary resources (cores) are not already
engaged. However, contention between two or more tasks assigned to the same
hardware core requires a sequential execution order, similar to software tasks.
Cores implemented on FPGAs can be dynamically reconfigured during a mode
change, involving a time overhead, which needs to respect the imposed maxi-
mal mode transition times Further, similar to the problems investigated in
Chapter 3 and Chapter 4, PEs might feature dynamic voltage scaling to enable
a trade-off between power consumption and performance that can be exploited
during run-time. A set specifies the available discrete voltages of DVS-PE

For such PEs a voltage schedule needs to be derived, in addition to a tim-
ing schedule. To implement a multi-mode application captured as OMSM, the
tasks and communications of all operational modes need to be mapped onto the
architecture, and a valid schedule for these activities where
needs to be constructed. Further, for tasks mapped to DVS-enabled components
an energy reducing voltage schedule has to be determined. According to these
aspects, an implementation candidate can be expressed through four functions,
which need to be derived for each operational mode

Task mapping:

Communication mapping:

Timing schedule:

Voltage schedule:

where and denote task and communication mapping, respectively,
assigning tasks to PEs and communications to CLs. Activity start times are
specified by the scheduling function while defines the voltage sched-
ule for all tasks mapped to DVS-PEs, where is the set of the
possible discrete supply voltages of Clearly, the mappings as well as the
corresponding schedules are defined for every mode separately, i.e., during the
change from mode to mode the execution of activities found in mode

are finished, and the activities of mode are activated.

5.2 Motivational Examples
The aim of this section is to motivate the key ideas behind the new multi-

mode co-synthesis, that is, the consideration of mode execution probabilities
and multiple task type implementations. First, the influence of mapping in
the context of multi-mode embedded systems with different mode execution

Energy-Efficient Multi-Mode Embedded Systems 105

Figure 5.4. Mode execution probabilities

probabilities is demonstrated. Second, it is illustrated that multiple task imple-
mentations can help to reduce the energy dissipation of multi-mode embedded
systems.

Example: Mode Execution Probabilities

For simplicity, timing and communication issues are neglected in the following
example. Consider the application shown in Figure 5.4(a), which consists of two
operational modes, and each specified by a task graph with three tasks.
The system spends 10% of its operational time in mode and the remaining
90% in mode i.e., the execution probabilities are given by and

The specification needs to be mapped onto a target architecture
built of one general-purpose processor (PE1) and one ASIC (PE2), linked by
a bus (CL1). Depending on the task mapping to either of the components, the
execution properties of each task are shown in Table 5.1. It can be observed that

Table 5.1. Task execution and implementation properties

106 SYSTEM-LEVEL DESIGN TECHNIQUES

all tasks are of different type, therefore, if a task is mapped to HW, a suitable
core needs to be allocated explicitly for that task. Hence, in this particular
example, no hardware sharing is considered. Each allocated core uses area
on the hardware component that offers i.e., at most 2 cores can be
allocated at the same time without violating the area constraint (see Table 5.1,
Column 6). Note that although the two modes execute mutually exclusive,
the task types implemented in hardware (HW cores) cannot be changed during
run-time, since their implementation is static (non-reconfigurable ASIC); as
opposed to software-programmable components. Consider the mapping shown
in Figure 5.4(b), in which the highest energy consuming tasks and when
implemented in software) are executed using a more energy-efficient hardware
implementation. According to the task energy dissipations given in Table 5.1,
the energy dissipation during modes and are

and
Neglecting the mode execution probabilities by assuming that both modes are
active for even amounts of time (50% mode and 50% mode energy
consumption can be calculated as

Nevertheless, taking the real behaviour into account, mode is
active for 10% of the operational time, i.e., its energy dissipation can then be
calculated as Similarly, mode is
active 90% of the operational time, hence, its energy is given by

Based on both modes, the real energy dissipation
results in Now consider an alternative
mapping for the same task graph, shown Figure 5.4(c). In this configuration
tasks and i.e., the most energy dissipating tasks of the highly active mode

use energy-efficient hardware implementations on PE2, while task of
the less active model is shifted into the software-programmable processor
(PE1). According to this solution, the energy consumptions of modes and

are given by and
Considering the even execution of each

mode (neglecting the execution probabilities), the even energy consumption
can be calculated as 0.5 . 40mJ + 0.5 . 13.047mJ = 26.524mJ. Note that this
value is higher than the even energy of the first mapping
Thus, a co-synthesis approach that neglects the mode execution probabilities
would optimise the system towards the first mapping. However, in real-life
the modes are active for different amount of time and hence the real energy
dissipation is given by
This is 41 % lower compared to the first mapping shown in
Figure 5.4(b), which is not optimised for an uneven task execution probability.
Furthermore, the second task mapping allows to switch off PE2 and CL1 during
mode since all tasks of this mode are assigned to PE1. This results in a

Energy-Efficient Multi-Mode Embedded Systems 107

Figure 5.5. Multiple task type implementations

significant reduction of the static power, additionally increasing the energy
savings.

Example: Multiple Task Type Implementations
An important characteristic of multi-mode systems is that tasks of the same
type might be found in different modes, i.e., resources can be shared among the
different modes in a time-multiplexed fashion. To increase the possibility of
component shutdown, it might be necessary to implement the same task type
multiple times, however, on different components. The following example,
shown in Figure 5.5, clarifies this aspect. Here tasks and are of type A
(see Figure 5.5(a)), allowing resource sharing between these tasks. The sharing
is possible without contention due to the mutual exclusive execution of these
tasks, since only one mode is active at a given time. In the first mapping, given
in Figure 5.5(b), both tasks utilise the same HW core. However, implementing
task in software (additional task type A on PE1), as shown in Figure 5.5(c),
allows to shut down PE2 and CL1 during the execution of mode Hence,
multiple implementations of task types can help to reduce power dissipation.

These two examples have demonstrated that it is essential to guide the synthe-
sis process by: (a) an energy model that takes into account the mode execution
probability as well as (b) allowing multiple task implementations.

5.3 Previous Work
Over the last few year, numerous methodologies for the design of low power

consuming embedded systems have been proposed, including approaches that
leverage power management techniques, such as dynamic power management
(DPM) and dynamic voltage scaling (DVS). Nevertheless, a crucial feature of

108 SYSTEM-LEVEL DESIGN TECHNIQUES

many modern embedded systems is their capability to execute several different
applications (multi-modes), which are integrated into a single device.

Approaches for the schedulability analysis of systems with several modes
of operations can be found in the real-time research community [117, 135].
However, these approaches solely concentrate on scheduling aspects (i.e., they
investigate if the mode change events fulfil the imposed timing constraints)
and do not address implementation aspects. Three recent approaches have
addressed various problems involved in the design of multi-mode embedded
systems [84, 113, 136]. Shin et al. [136] proposed a schedulability-driven per-
formance analysis technique for real-time multi-mode systems. They show
that it is possible, through a sophisticated performance estimation, to identify
timing critical tasks, which are active in different operational modes. This
identification allows to improve the execution times of the most crucial tasks,
in order to achieve system schedulabilitly. In their work, the optimisation of
the identified tasks is up to the designer. For example, reductions in the exe-
cution times can be made by handcrafted code tuning and outsourcing of core
routines into hardware. Kalavade and Subrahmanyam [84] have introduced
a hardware/software partitioning approach for systems that perform multiple
functions. Their technique classifies tasks, found within similar applications,
into groups of task types. The implementation of frequently appearing task
types is biased towards hardware. This can be intuitively justified by the fact
that costly hardware implementations are shared across a set of applications,
hence, exploiting the allocated hardware more effective. Oh and Ha [113] ad-
dress the problem in a slightly different way. Their co-synthesis framework for
multi-mode systems is based on a combined scheduling and mapping technique
for heterogeneous multiprocessor systems (HMP [111]). Taking a processor
utilisation criterion into account, an allocation-controller selects the required
processing elements such that the schedulability constraint is satisfied and the
system cost is minimised. The main principle behind all three approaches is
to consider the possibility of resource sharing, i.e., computational tasks of the
same type, which can be found in different modes, utilise the same implemen-
tations. Thereby, multiple hardware implementations of the same task type are
avoided, which, in turn, reduces the hardware cost. As opposed to these ap-
proaches, the work presented in this chapter addresses the design of low energy
consuming multi-mode systems; hence, it differs in several aspects from the
previous works. This chapter investigates the following subjects:

The consideration of mode execution probabilities and their effect on the
energy-efficiency of multi-mode embedded systems is analysed and demon-
strated.

A co-design methodology for the design of energy-efficient multi-mode sys-
tems is presented. The proposed co-synthesis maps and schedules a system

(a)

(b)

Energy-Efficient Multi-Mode Embedded Systems 109

specification that captures both mode interaction and mode functionality
onto a distributed heterogeneous architecture. Four mutation strategies are
introduced that aid the GA based optimisation process in finding solutions
of high quality by pushing the search into promising design space regions.

Dynamic voltage scaling is investigated in the context of multi-mode embed-
ded systems. A transformation-based approach is used to tackle the problem
of DVS on processing elements that execute different tasks in parallel, but
that offer only a single scalable supply voltage source.

(c)

5.4 Problem Formulation
The goal of the introduced co-synthesis is an energy-efficient and feasible

implementation of application modelled as OMSM. This involves the deriva-
tion of the mapping and schedule functions, and (outlined
Section 5.1.2), under the consideration of static and dynamic power as well as
mode execution probabilities. Although the technique and algorithms intro-
duced in the Chapters 3 and 4 concentrate on the minimisation of the dynamic
power, in multi-mode systems static power consumption can have a significant
impact on the overall energy efficiency. The reasons for this are the different
performance requirements of the various operational modes. For instance, the
minimal performance requirements of the hardware architecture are imposed
by the most computational intensive mode, i.e., the minimal allocated archi-
tecture has to provide enough computation power to execute this performance
critical mode. However, the allocated architecture might be far too powerful
for the execution of modes with low performance needs. Furthermore, low
performance modes, such as the standby-mode of mobile phones (i.e., Radio
Link Control), often account for the greatest portion of the system time. During
such circumstances, the static energy dissipation of unnecessarily switched-on
PEs and CLs can outweigh the dynamic energy consumption caused by tasks
of a “lightweight” mode. Thus, switching-off the unneeded components be-
comes an important aspect particularly in multi-mode embedded systems. In
accordance, an accurate estimation of the average power consumption of an
implementation alternative should consider both static and dynamic power, and
furthermore the mode execution probabilities. The average power consumption

can be expressed using the following equation:

where and refer to the static power dissipation, the dynamic
power dissipation, and the execution probability of mode respectively. The

110 SYSTEM-LEVEL DESIGN TECHNIQUES

static and dynamic power consumptions are given as:

and

where refers to the static power consumption of a component which
is found in the set of all active components of mode Please
note that this static power consumption also includes the additional power re-
quired for the DC/DC converter of voltage-scalable processors. Further,
and denote all activities and the hyper-period of mode respectively.
With respect to the type of activities, the dynamic energy consumption
can be calculated in the same way as introduced in Equation (4.2) of Section 4:

where is the dynamic power consumption and the execution time of
tasks when executed at nominal supply voltage Tasks mapped
to DVS-PEs can execute at a scaled supply voltage resulting in a reduced
energy consumption. Further, communications consume power over a time

If the DVS-enabled processors are restricted to a limited set of discrete
voltages, the continuous selected supply voltage is split into its two neigh-
boring discrete voltages and The corresponding execution times
in each voltage are calculated as given in Section 3.2.2. The mode execution
probabilities used in Equation (5.1) are either based on approximations or sta-
tistical information collected from several real users. In the case that statistical
information is available from a set of different users U, the average execution
probabilities of a single operational mode can be calculated.

The co-synthesis goal is to find a task mapping a communication map-
ping a starting time schedule as well as a voltage schedule for
each operational mode such that the total average power given in Equa-
tion (5.1), is minimised. Furthermore, a feasible implementation candidate
needs to fulfil the following requirements:

The mapping of tasks does not violate area constraints in terms of
memory and hardware area, i.e., where
is the set of all task types implemented on PE and and refer to
the area used by task type and the available area on PE respectively.

(a)

Energy-Efficient Multi-Mode Embedded Systems 111

Please note that for DVS-enabled HW, represents the available area
including the area overhead required for the DC/DC converter.

The timing schedule and the voltage schedule based on task and
communication mapping, do not exceed any task deadlines or task graph
repetition periods therefore,
where and refer to task start time and task execution time (poten-
tially based on voltage scaling).

(b)

The system reconfiguration time between mode changes does not exceed
the imposed maximal mode transition times Hence,

needs to be respected for all mode transitions.

(c)

5.5 Co-Synthesis of Energy-Efficient Multi-Mode Systems
Energy minimisation techniques for mapping and activities scheduling of

single mode embedded systems have already been introduced in Chapter 4.
This section proposes new techniques for the co-synthesis of energy-efficient
multi-mode embedded systems. Similar to the algorithms given in Chapter 4,
the co-synthesis for multi-mode systems is based on two nested optimisation
loops. The outer loop optimises task mapping and core allocation, while the
inner loop is responsible for the combined optimisation of communication map-
ping and scheduling. While the communication mapping and scheduling in the
multi-mode co-synthesis approach are based on the algorithms given in Sec-
tion 4.2.2, this section reconsiders task mapping, hardware core allocation, and
dynamic voltage scaling to suit the particular problems of multi-mode embed-
ded systems. Hence, the remainder of this section is organised as follows. We
first discuss in Section 5.5.1 how mode execution probabilities be obtained in
practice. Section 5.5.2 outlines a new co-synthesis algorithm for multi-mode
systems, concentrating on task mapping and four improvement strategies that
aid to tackle the problem of multi-mode task mapping. Section 5.5.3 outlines
a heuristic technique for hardware core allocation. Finally, Section 5.5.4 de-
scribes a transformation-based approach for dynamic voltage scaling of parallel
execution task on single hardware components.

5.5.1 Estimation of Mode Execution Probabilities
As we have demonstrated in the motivational example of Section 5.2, the

consideration of mode execution probabilities during design time can help to
significantly reduce the energy consumption of the embedded system. Cer-
tainly, to achieve a good design it is necessary that the execution probabilities
(estimations) used during design time reflect the real usage probabilities (in-
field) accurately. In the following, we outline how to obtain adequate execution
probabilities using two different design scenarios:

112 SYSTEM-LEVEL DESIGN TECHNIQUES

The new design is an upgrade of an existing product which is connected to
a service provider (e.g. a new version of a mobile phone). For such product
types it is possible to use information regarding the activation profile that
has been collected on the provider side during the operation of the previous
product generation. For instance, the cellular network base stations can
record the activation profile of the mobile terminals (e.g. phones) regarding
radio link control and calling mode, directly in-field, such as the one shown in
Figure 5.6. The Figure gives the activation profile for a single phone during
an operation period of 24 hours. According to this profile, the phone stays
most of the time in a Radio Link Control mode, in order to maintain network
connectivity. While the Network Search mode and the Calling mode are
only active for small periods of the overall time. Using this information
for a large number of phones could then be evaluated and used during the
design of the new product.

(a)

Figure 5.6. Typical Activation Profile of a Mobile Phone

The product is a completely new design. In this situation, it is common
practice to evaluate the market acceptance before the final product is intro-
duced using a limited number of prototypes that are distributed among a set
of evaluation users. During this evaluation phase, the prototypes can gather
information regarding the activation profile. This information could then
be used during the final design of the product to optimize the energy con-
sumption. Of course, it is also possible to use application-specific insight
of the designer to estimate the execution probabilities. As we will show
in the experiments given in Section 5.6.1, even if the estimated execution
probabilities do not reflect the user activation with absolute accuracy, but
are sufficiently close to the real values, energy savings can be still achieved.

(b)

5.5.2 Multi-Mode Co-Synthesis Algorithm
The task mapping approach, which determines for all modes of applica-

tion is an enhancement of the genetic task mapping algorithm (EE-GTMA)
introduced in Section 4.2.1. These enhancements include the consideration of
resource sharing, component shutdown, and mode transition issues. As out-
lined in Section 4.1.2, GAs optimise a population of individuals over several

Energy-Efficient Multi-Mode Embedded Systems 113

Figure 5.7. Task mapping string for multi-mode systems

generations by imitating and applying the principles of natural selection. That
is, the GA iteratively evolves new populations by mating (crossover) the fittest
individuals (highest quality) of the current population pool until a certain con-
vergence criterion is met. In addition to mating, mutation, i.e., the random
change of genes in the genome (string), provides the opportunity to push the
optimisation into unexplored search space regions. As opposed to the single
mode task mapping strings of Section 4.2, task mapping strings for multi-mode
specifications combine the mapping strings of each operational mode into one
large task mapping string as shown in Figure 5.7. Within this string each number
represents the PE to which the corresponding task is assigned. This encoding
enables the usage of a genetic algorithm to optimize the placement of tasks
across the processing elements that form the distributed architecture. Please
note that this representation supports the implementation of multiple task types.
For instance, if two tasks of the same type are mapped onto different PEs, this
tasks are implemented on both PEs. Thereby, the possibility of multiple task
implementations is mainly inherited into the genetic mapping algorithm which
is guided by a cost function that accounts for the multiple task implementations,
i.e., the GA trades off between the savings in static power consumption against
the increase dynamic power.

The goal of the co-synthesis is to find a mapping of tasks that minimises the
total power consumption and obeys the performance constraints. Figure 5.8
outlines the pseudo-code of the co-synthesis algorithm. Starting from an initial
random population of multi-mode task mapping strings (line 1), the optimi-

114 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 5.8. Pseudo Code: Multi-Mode Co-Synthesis

sation runs until the convergency criterion is met (line 2). The used criterion
is based on the diversity in the current population and the number of elapsed
iterations without producing any improved individual. To judge the quality
of mapping candidates, i.e., the fitness which guides the genetic algorithm, it
is necessary to estimate important design objectives, including static and dy-
namic power dissipation, area usage, and timing behaviour (lines 03–13). The
following explains each of the required estimations. The hardware area de-
pends on the allocated cores on each hardware component (ASIC or FPGA).
Of course, for each task type mapped to hardware at least one core of this type
needs to be allocated. However, if too many cores are placed onto a single

Algorithm: MULTI-MODE-SYN
Input: - OMSM (finite state machine + task graphs), Technology

Library, Allocated Architecture
Output:- Outer loop: Core Allocation, Task Mapping

- Inner loop: Comm. Mapping, Scheduling, Scaled Voltages

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Pop=CreateInitialPopulation // randomly
while(NoConvergence(Pop))

forall
mob=ComputeMobilities(map) // ASAP & ALAP
cores=ImplementHWcores(map,mob) // (Section 5.5.3)
ap=CalcAreaPenalty(map,cores)
PstatPE=CalcStaticPowerPE
trp=CalcTransitionPenalty(cores)
forall

CommMapping_Scheduling(mode) // inner loop (Sec. 4.2.2)
tp(mode)=CalcTimingPenalty(mode)
Pdyn(mode)=CalcDynPower(mode) // incl. DVS
PstatCL=CalcStaticPowerCL

FM=MappingFitness(Pdyn,tp,PstatCL,PstatPE,ap,trp)
ran=RankingIndividuals(FM)
mat=SelectedMatingIndividuals(ran)
TwoPointCrossover(mat)
OffspringInseration(Pop)
ShutdownImprovementMutation(Pop)
AreaImprovementMutation(Pop)
TimingImprovementMutation(Pop)
TransistionImprovementMutation(Pop)

Energy-Efficient Multi-Mode Embedded Systems 115

ASIC or FPGA, the available area is exceeded and an area penalty is introduced
(line 6). On the other hand, if multiple tasks of the same type are mapped to
the same hardware component and the hardware area is not violated, it is pos-
sible to implement cores multiple times (if helpful for the energy reduction).
In the proposed approach, additional cores (line 5) are allocated for parallel
tasks with low mobility (line 4), therefore, the chance to exploit application
parallelism is increased. Clearly, from an energy point of view, this is also
preferable, especially in the presence of DVS, where a decreased execution
time can be exploited. Section 5.5.3 describes the core allocation in more de-
tail. At this point it is possible to compute the static power consumption of the
implementation (line 7), taking into account component shutdown between dif-
ferent modes. Components can be shut down during the execution of a certain
mode whenever no tasks belonging to that mode are mapped onto these compo-
nents, i.e., the component is vacant (for instance, PE0 during execution of mode

in Figure 5.5, page 107). Another important aspect is the reconfigurability
of FPGAs which allows to exchange the implemented cores to suit the active
mode. However, this reconfiguration during a mode change takes time, hence,
a transition penalty is introduced if the maximal transition times are exceeded
(line 8). Having determined the cores to be implemented (line 5), it is now
also possible to schedule each mode of the application and to derive a feasible
communication mapping (line 10). Since the modes are mutually exclusive, it
is possible to employ a communication mapping and scheduling optimisation
for a single mode system. The technique outlined in Section 4.2.2 is utilised
for this purpose. If timing constraints are violated by the found schedule, a tim-
ing penalty is introduced (line 11). Furthermore, based on the communication
mapping and scheduling, the dynamic power consumption of the application
can be computed, taking into account DVS (line 12) if voltage-scalable compo-
nents are present. Similarly to the shutdown of PEs, it is also possible to switch
off a CL when no communications are mapped to that link (line 13), therefore,
further reducing the static power consumption of the system. Based upon all
estimated power consumptions and penalties, a fitness is calculated (line 14)
as,

where the average power dissipation is given by Equation (5.1) and intro-
duces a timing penalty if the schedule exceeds task deadlines or the repetition
period. Further, an area penalty is applied for all PEs with area violation
by relating used area and area constraint Similarly, a transition time
penalty is applied for all transitions that exceed their maximal transition
time limit, i.e., transition time exceeds the maximal allowed transition time

Both area and transition penalty are weighted which al-

116 SYSTEM-LEVEL DESIGN TECHNIQUES

lows to adjust the aggressiveness of the penalty. Having assigned a fitness to
all individuals of the population, they are ranked using linear scaling (line 15).
A tournament selection scheme is used to pick individuals (line 16) for mating
(line 17). The produced offsprings are inserted into the population (line 18).
In order to improve the performance of the genetic algorithm, we apply four
genetic mutation strategies that add problem specific knowledge into the opti-
mization process (lines 19–22). This is achieved by introducing a small number
of mutated individuals into the current population whenever the optimization
process occurs to be trapped. These newly injected solution candidates provide
the potential to turn into high quality solution by mating with other solution.
These mutation strategies are introduced next.

Shutdown Improvement: To increase the chances of component shutdown,
which leads to a reduction of static power consumption, the genetic task
mapping algorithm employs a simple yet effective strategy during the opti-
misation. Out of the current population randomly picked individuals (prob-
ability 2% was found to lead to good results) are modified as follows. A
single mode and a non-essential PE are selected. Non-essential PEs
are considered to be PEs that implement task types that have alternative im-
plementations on other PEs, hence, they are not fundamental for a feasible
solution. Our goal is to switch off PE during the execution of mode

Therefore, all tasks of mode which are mapped to are randomly
re-mapped to the remaining PEs hence, PE can be shut down
during mode Of course, only feasible mappings are allowed, i.e., tasks
are always mapped randomly to the PEs that are capable of executing this
kind of task type. The pseudo code of this shutdown improvement strategy
is show in Figure 5.9. A list of non-essential PE, i.e., PEs that have the
potential to be switched off, is produced in line 01. The operational mode

is selected randomly, however, the greater the execution probability of
a mode the higher are the chances to select this mode (line 02–08). The PE
to be switched-off is randomly selected in the lines 09–12. PEs accom-
modating less tasks than others are selected with a higher probability, since
re-mapping only a small number of tasks is likely to influence the execution
behaviour less drastically than the re-mapping of many tasks. After the
operational mode and the PE have been selected, all tasks mapped to
PE in mode are randomly re-mapped to the remaining PEs (line 13–
14). The so mutated string is returned and inserted into the population pool.
Due to the functional similarity of the four improvement strategies, only the
pseudo code of the shutdown technique is given here (see Figure 5.9).

Area Improvement: To avoid convergence towards area infeasible solutions,
a second strategy is employed. If only infeasible area mappings have been
produced for a certain number of generations, the search is pushed away

Energy-Efficient Multi-Mode Embedded Systems 117

Algorithm: SHUTDOWN-IMPROVEMENT
Input: - Randomly picked initial mapping string M (probability 2%)

- OMSM (finite state machine + task graphs)
- Technology Library, Allocated Architecture

Output:- For shutdown modified mapping string

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:

12:
13:
14:
15:

NonEssPEs PossibleShutdownPEs()
Rand = RandomFloat(0, 1)
AccuProb = 0

forall (Mode, ModeNumbers) {
AccuProb += GetExecutionProb(Mode)
if (RandDouble <= AccuProb) break
else

Rand = RandomFloat(0,TasksNoInvSum)
forall (NoOfPE, NoAllocPEs) {

if ((InvInterval0[NoOfPE] <= RandDouble) &&
(InvInterval1[NoOfPE] > RandDouble)) {

= NoOfPE } }
forall (gene

gene =
return M // modified mapping

Figure 5.9. Pseudo Code: Mapping Modification towards component shutdown

from this region by randomly re-mapping hardware tasks onto software-
programmable PEs.

Timing Improvement: In contrast to the area improvement strategy, if a cer-
tain amount of timing infeasible solutions have been produced, software
tasks are randomly mapped to faster hardware implementations. Thereby,
the chance to find timing feasible implementations is increased.

Transition Improvement: Cores implemented in FPGAs can be dynamically
reconfigured. However, this involves a time overhead. If this overhead
exceeds the imposed transition time limits, the mapping is infeasible. Hence,
after generating for a certain number of generations solely solutions that
violate the transition times, tasks are randomly re-mapped away from the
FPGAs that cause the violations.

Although some of the produced genomes (strings) might be infeasible in
terms of area and timing behaviour, all these strategies have been found to
improve the search process significantly by introducing individuals that evolve

118 SYSTEM-LEVEL DESIGN TECHNIQUES

into high quality solutions. For instance, running the synthesis process (on
examples of moderate size) without the shutdown improvement strategy often
results in implementations which do not exploit this energy reduction possibility.

5.5.3 Hardware Core Allocation

For tasks mapped to ASICs and FPGAs it is necessary to allocate hardware
cores that are capable of executing the task types. This is a trivial job as long as
only tasks of different types are mapped to the same hardware component, i.e.,
when a single core for each task needs to be allocated. Nevertheless, if tasks of
the same type are assigned to the same PE more than once, it is necessary to
make a decision upon how many core of type need to be implemented. This
is important because hardware cores are able the execute tasks in parallel, i.e.,
the right quantitative choice of cores can efficiently help to exploit application
parallelism, hence, improve the timing behaviour as well as energy dissipation.
In the proposed co-synthesis, the following approach is employed during the
schedule optimisation. Initially, each task type assigned to hardware is im-
plemented only once, even if multiple tasks of this type are mapped onto the
same PE. This ensures that all hardware tasks have at least one executable core
implementation. If the hardware area constraints are not violated through the
initial allocation, additional cores are implemented as follows. The tasks are
analysed to identify possibly parallel executing task, taking into account task
dependencies. These tasks are then ordered according to their mobility. Clearly,
tasks with low mobility are more likely to improve the timing behaviour and
therefore should be the preferred choice when implementing additional hard-
ware cores. Accordingly, cores for tasks with low mobility are implemented as
long as the area constraints of the hardware components are not violated. Note,
this strategy potentially improves the energy dissipation, since it is probable to
result in more slack time, which, in turn, can be exploited through DVS.

5.5.4 Dynamic Voltage Scaling for Multiple Parallel
Executing Tasks

Dynamic voltage scaling is a powerful technique to reduce energy consump-
tion by exploiting temporal performance requirements through dynamically
adapting processing speed and supply voltage of PEs. An effective voltage
scaling technique for this purpose has already been introduced in Chapter 3.
Furthermore, the applicability of DVS to embedded distributed systems was
demonstrated in [68, 100]. However, these works as well as the energy-gradient
technique introduced in Chapter 3 concentrate on dynamically changing the
performance of software PEs only, while parallel execution of tasks on hard-
ware resources has been neglected. Nevertheless, in the context of energy-
efficient multi-mode systems, where performance requirements of each op-

Energy-Efficient Multi-Mode Embedded Systems 119

Figure 5.10. DVS Transformation for HW Cores

erational mode can vary significantly, DVS needs to be considered carefully.
Consider, for instance, an inverse discrete cosine transformation (IDCT) algo-
rithm implemented in fast hardware which is used during two modes: MP3
decoding and JPEG image decoding. Clearly, the JPEG decoder should restore
images as quickly as possible, i.e., the IDCT hardware is required to execute at
maximal supply voltage (equivalent to peak performance). On the other hand,
the MP3 decoder works at a fixed repetition rate of 25ms for which the hard-
ware implementation operates faster than necessary, i.e, the IDCT performance
can be reduced such that this repetition rate is adequately met. By using DVS
it is possible to adapt the execution speed to suit both needs and to reduce the
energy consumption to a minimum.

This chapter considers that hardware components might employ DVS. How-
ever, due to the area and power overhead involved in additional DVS circuitry
(DC/DC-converter [65, 109]) it is assumed that all cores allocated to the same
hardware component are fed by a single voltage supply, i.e., dynamically scal-
ing the supply voltage simultaneously affects the performance of all cores on
that hardware component. To cope with this problem, the potentially parallel
executing tasks on a single scalable hardware resource are transformed into an
equivalent set of sequentially executing tasks, taking into account the dynamic
power dissipation on each core. Note that this is done to calculate the scaled
supply voltages only, i.e., this virtual transformation does not affect the real
implementation. Figure 5.10 shows the transformation of five hardware tasks,
executing on two cores (both cores are implemented within the same hardware
component), to three sequential tasks on a single core. This sequential execu-
tion is equivalent to the behaviour of software tasks, hence, a voltage scaling
technique for software processors can be applied. Nevertheless, it is important
to consider task dependencies and task deadlines during this transformation,
i.e., it might be necessary to further subdivide the transformed task graph, in

120 SYSTEM-LEVEL DESIGN TECHNIQUES

order to maintain a correct specification. For instance, consider original speci-
fication given in Figure 5.11. Here, task has a data dependency with another

Figure 5.11. DVS Transformation for HW Cores considering inter-PE communication

task outside of the given component. Due to the data dependencies the transfor-
mation results in four tasks, instead of three (Figure 5.10). Thereby, task and
task can be scaled independent of each other. While task can influence
tasks on other PEs, task solely affects downstream tasks. Exactly as the
original specification. Task deadlines can be handled similarly.

The pseudo code description of this transformation is given in Figure 5.12.
The function takes as input the system task graph and a hardware processing
element that is DVS enabled. In the first two steps (lines 1 and 2) it generates
two priority queues of tasks mapped to the HW processing element, sorted in
decreasing order of start and end time, respectively. A sequential task graph and
a current power variable are initialised (lines 3 and 4). At the end of algorithm
run, the sequential task graph will hold the transformed tasks. The following
transformations are repeated until no tasks are left in the priority queue of task
sorted according to their end times (EndTaskQueue):

If the next chronological event is due to a starting task (line 6), the current
power dissipation is increased by the power dissipation of the starting task
or tasks (line 7) and a new task is added to the sequential task graph by
inheriting the current power dissipation and the start time (line 8). The
starting tasks are remove from StartTaskQueue (line 9).

If the next chronological event happens due to an end task (line 11), then
the current power dissipation is decreased by the power of the ending tasks
(line 12). According to whether the current power has reach zero or not, a
task is added to the sequential task graph by inheriting the current power
value and the outedges (if any) of the ending task (line 14), or the end time

Energy-Efficient Multi-Mode Embedded Systems 121

Algorithm: DVS-HARDWARE-TRANSFORMATION
Input: - Task Graphs

- DVS-enabled Hardware Processing Element
Output:- Sequentialised tasks on the HW PE

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

StartTaskQueue = InitStartTaskQueue(Tasks)
EndTaskQueue = InitEndTaskQueue(Tasks)
SeqTaskGraph 0
Pw 0
while(EndTaskQueue {

if (TimeStartTask < TimeEndTask) {
Pw += Pw(StartTasks)
AddTask(SeqTaskGraph, Pw, StartTime)
RemoveStartTasks(StartTaskQueue)

}
else if (TimeEndTask < TimeStartTask) {

Pw -=Pw(EndTasks)
if (Pw

AddTask(SeqTaskGraph, Pw, OutEdgesOffPE)
else

InheritEndTime(SeqTaskGraph->Last, OutEdgesOffPE)
RemoveEndTasks(EndTaskQueue)

}
else if (TimeStartTask = TimeEndTask) {

if (Core(StartTasks) = Core(EndTasks)) {
if (OutEdgesOffPE(EndTasks)

AddTask(SeqTaskGraph, Pw, OutEdgesOffPE)
}
else { // Core(StartTasks) Core(EndTasks) {

Pw = Pw + Pw(StartTasks) - Pw(EndTask)
AddTask(SeqTaskGraph, Pw, OutEdgesOffPE)

}
RemoveStartTasks(StartTaskQueue)
RemoveEndTasks(EndTaskQueue)

}
}
return (SeqTaskGraph)

Figure 5.12. Pseudo code: Task graph transformation for DVS-enabled hardware cores

and the outedges are inherited to the last task in the sequential task graph
(line 16). The ending tasks are removed from EndTaskQueue (line 17).

122 SYSTEM-LEVEL DESIGN TECHNIQUES

If the next chronological events occur to the simultaneously ending and
starting task the following procedure is necessary (line 16). If both events
appear on the same HW core (i.e., they subsequent tasks), and there are
outedges emitting from the ending task, then a new task is added to the
sequential task graph. However, the current power is maintained at the
same level. Nevertheless, if the two events occur on different cores the
current power is adjusted and an new task is introduced to the sequential
task graph. Starting and ending tasks are removed StartTaskQueue and
EndTaskQueue (lines 28 and 29).

After no tasks are left in the task queue, which is sorted in chronologically
decreasing order of end times, the sequential task graph is returned (line 32).

Experimental Results: Multi-Mode5.6
Based on techniques and algorithms presented in this chapter, the multi-mode

synthesis approach has been implemented on a Pentium III/1.2GHz Linux PC.
In order to evaluate its capability to produce high quality solutions in terms of
energy consumption, timing behaviour, and hardware area requirements, a set of
experiments has been carried out on 15 automatically generated multi-mode ex-
amples (mul1–mul151) and one real-life benchmark example (smart-phone).
The following two sections split these experiments into hypothetical and real-
life examples. All reported results were obtained by running the optimisation
processes 40 times and averaging the outcomes.

5.6.1 Hypothetical Examples
Each of the 15 generated examples (mul1–mul15) is specified by 3 to 5 oper-

ational modes, each consisting of 8 to 32 tasks (required execution cycles vary
between 500–350000). The used target architectures contain 2 to 4 heteroge-
neous PEs (clock frequencies are given in the range from 25 to 50MHz), some
of which are DVS enabled. These PEs are interconnected through 1 to 3 com-
munication links. The active power consumption of programmable processors
was randomly chosen between 5mW and 500mW, depending on the executed
task. The power dissipation of hardware components are selected to be 1 to 2
orders of magnitude lower. Further, the static power dissipation was set to be 5
to 15% of the maximal active power. The execution probabilities of individual
modes were randomly chosen and vary between 1% and 85%. Timing con-
straints have been assigned in the form of individual task deadlines as well as
repetition periods to the modes (hyper-periods). The timing constraints were
varied between 15ms and 500ms, such that schedulable implementations with
up to 50% deadline slack could be found.

To illustrate the importance of taking mode execution probabilities into ac-
count during the synthesis process, an execution probability neglecting ap-

Energy-Efficient Multi-Mode Embedded Systems 123

proach is compared with the proposed synthesis technique, which considers the
mode probabilities. The first two sets of experiments demonstrate the energy
savings achievable through the consideration of mode execution probabilities,
either with or without the exploration of DVS. The third set examines the in-
fluence of the actual activation profile on the energy savings.

Comparisons excluding Dynamic Voltage Scaling
To highlight the influence of mode execution probabilities on the achievable
energy savings, consider Table 5.2 which shows the multi-mode co-synthesis
results for the 15 automatically generated benchmarks, distinguishing between
an execution probability neglect approach (“w/o probab.”) and the introduced
approach (“with probabilities”). The first three columns give the benchmark

Table 5.2. Considering mode execution probabilities (excluding DVS)

names, the hyper-period (repetition period) of each mode, and the mode ex-
ecution probabilities. The fourth and the fifth column present the dissipated
average power and optimization time for the execution probability neglecting
synthesis approach. Note that the execution probabilities are neglected during
the synthesis only, while the computed power dissipations at the end of the syn-
thesis incorporate the execution probabilities, in order to ensure a meaningful
comparison. The sixth and the seventh column show the same for the proposed
approach, which considers the execution probabilities throughout the synthesis
process. Take, for instance, example mu16. When ignoring the execution prob-

124 SYSTEM-LEVEL DESIGN TECHNIQUES

abilities during the optimization, an average power dissipation of 1.677mW is
achieved. However, optimizing the same benchmark example under the con-
sideration that modes execute with uneven probabilities (e.g., 15:10:10:65 —
i.e., mode 1 is active for 15%, mode 2 is active of 10%, and so on), the average
power can be reduced by an appropriate task mapping and core allocation to
1.301mW. This is a significant reduction of 22.46%. Furthermore, it can be
observed that the proposed technique was able to reduce the energy consump-
tion of all examples with up to 62.18% (mul7). Note that these reductions are
achieved without any modification of the underlying hardware architectures,
i.e., the system costs are not increased. It is also important to note that the
achieved energy reductions are solely introduced by taking the mode execution
probabilities into account during the co-synthesis process, i.e., both compared
approaches allow the same resource sharing and rely on the same scheduling
technique. When comparing the optimization times for both approaches, it can
be observed that the proposed technique shows a slightly increased CPU time
for most examples, which is mainly due to the more complex design space
structure.

Comparisons including Dynamic Voltage Scaling

The next experiments were conducted to see how the proposed technique com-
pares to DVS and if further savings can be achieved by taking the mode proba-
bilities and DVS simultaneously into account. Table 5.3 reports on the findings.
The DVS technique that was used here is based on PV-DVS [133], which has
been extended to enable the consideration of DVS not only for software proces-
sors, but also for parallel executing cores on hardware PEs (see Section 5.5.4).
As in the first experiments, two approaches are compared here. The first ap-
proach disregards the mode execution probabilities during optimization, while
the second takes them into account throughout the co-synthesis. Similar to Ta-
ble 5.2, the second and the third column of Table 5.3 show the results without
consideration of execution probabilities, whilst the fourth and the fifth column
present the results achieved by taking execution probabilities into account.
Let us consider again benchmark mul6. Although the execution probabili-
ties are neglected in the fourth column, a reduced average power consumption
(0.689mW) can be observed, when compared to the results given in Table 5.2.
This clearly demonstrates the high energy reduction capabilities of DVS. Never-
theless, it is possible to further minimize the power consumption to 0.465mW
by considering the execution probabilities together with DVS. This is an im-
provement of 32.53%, solely due to the synthesis for the particular execution
probabilities. For all other benchmarks savings of up to 64.02% (mul7) were
achieved. Due to the computation of scaled supply voltages and the influence
of scheduling on the energy consumption, the optimization times are higher
when DVS is considered.

Energy-Efficient Multi-Mode Embedded Systems 125

Table 5.3. Considering mode execution probabilities (including DVS)

Figure 5.13. Pareto optimal solution space achieved through a single optimisation run of mul15
(without DVS), revealing the solution trade-offs between energy dissipation and area usage

Figure 5.13 shows the Pareto outcome of the typical co-synthesis run. Each
diamond in this graph indicates a possible implementation of benchmark mul15,

126 SYSTEM-LEVEL DESIGN TECHNIQUES

however, each with a different trade-off between energy dissipation of area
usage. The rightmost solution respects all imposed system constraints including
area (area violation is 0). This solution dissipates an energy of 1.179mW.
Nevertheless, the graph indicates that further energy savings can be made by
mapping more functions towards hardware. Of course, increasing the used area
corresponds to more costly design. For instance take the leftmost solution,
which dissipated 0.773mW. To achieve this reduced energy dissipation it is
necessary to increase the available hardware area by 124%, i.e., the hardware
requirements are more than doubled.

Influence of Real Activation Probabilities

The next experiment is conducted to highlight the influence of the user behaviour
on the energy efficiency of a system that has been synthesised under the consid-
eration of certain mode execution probabilities. Certainly, the mode execution
probabilities, which are used during the synthesis represent an “imaginative”
user and the activation probabilities of a real user will differ from those. Ac-
cordingly, the following experiment tries to answer the question how the energy
efficiency is affected by different activation profiles during application run-time.
For experimental purpose a simple specification with two modes is used which
contains 14 and 24 tasks (mode 1 and mode 2). The underlying architecture
consists of two programmable processors and a single ASIC, all connected via
a shared bus. This configuration was synthesised for three different pairs of
execution probabilities (0.1:0.9, 0.9:0.1, and 0.5:0.5). These three implemen-
tations possibilities correspond to the three lines shown in Figure 5.14. All
implementations are based on the same hardware architecture; yet, each has a
different task and communication mapping, core allocation, as well as sched-
ule. The first solution (solid line) was synthesised under the consideration of
execution probabilities 0.1:0.9, that is, it is assumed that mode 1 and mode 2
are active for 10% and 90% of the operational time, respectively. Similarly, the
second (dashed) and the third (dotted) line represent solutions that have been
synthesised using execution probabilities 0.9:0.1 and 0.5:0.5, respectively. Ac-
cording to the real execution probabilities during run-time, i.e., the activation
behaviour of the user, the average power dissipations of the implemented sys-
tems vary. Consider the system optimised for execution probabilities 0.1:0.9
(solid line). If the user behaviour corresponds to these probabilities (User A),
the system dissipates an average power of approximately 5.5mW (point I).
However, if a different user (User B), for instance, uses mode 1 for 90% and
mode 2 for 10% of the time (0.9:0.1), the system will dissipate approximately
12.5mW (point II). Nevertheless, if the system would be optimised for this ac-
tivation profile (0.9:0.1), as indicated by the dashed line in Figure 5.14, a lower
power dissipation of around 2.6mW (point III) can be achieved. Similarly, if
the system is optimised for execution probabilities 0.9:0.1 (dashed line) and the

Energy-Efficient Multi-Mode Embedded Systems 127

Figure 5.14. A system specification consisting of two operational modes optimized for three
different execution probabilities
(solid line–0.1:0.9, dashed–0.9:0.1, dotted–0.5:0.5)

user runs the application 10% in mode 1 and 90% in mode 2 (User A), then a
power dissipation of 12.5mW (point IV) is given. While an optimisation to-
wards this usage profile can achieve a system implementation which dissipates
only 5.5mW (point I), i.e., extending the battery-lifetime by a factor of 2.83
times. The dotted plot in Figure 5.14 represents the solution when the execution
probabilities are neglected during the optimisation, that is, the execution prob-
abilities are considered to be equal for both modes. Of course, if the modes 1
and 2 are active for equal amounts of time, this solution achieves a lower power
dissipation (6.5mW, point V) than the systems optimised for execution prob-
abilities 0.1:0.9 (9mW, point VI) and 0.9:0.1 (7.6mW, point VII). The figure
reveals that the design for 0.1:0.9 (solid line) achieves the lowest power dissipa-
tion when the user complies to an activation profile between 0:1 and 0.21:0.79.
While the designs for 0.5:0.5 (dotted line) and for 0.9:0.1 (dashed line) lead
to the lowest energy dissipation in the ranges from 0.21:0.79 to 0.57:0.43 and
0.57:0.43 to 1:0, respectively. In summary, Figure 5.14 clearly shows that the
execution probabilities substantially influence the energy dissipation of the sys-
tem. Certainly, the system should be optimised as close as possible towards
the real behaviour to achieve low energy consumptions, which, in turn, result
in longer battery-lifetimes.

128 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 5.4. Smart phone experiments without DVS

5.6.2 Smart Phone Benchmark
To further validate the co-synthesis technique in terms of real-world appli-

cability, the introduced approach was applied to a smart-phone example. This
benchmark is based on three publicly available applications: a GSM codec [4],
a JPEG codec [5], and an MP3 decoder [72]. Accordingly, the smart-phone of-
fers three different services to the user, namely, a GSM cellular phone, a digital
camera, and an MP3-player. Of course, the used applications do not specify the
whole smart-phone device, however, a major digital part of it. The specification
for this example, given as operational mode state machine (OMSM), has already
been introduced in Figure 5.1. For each of the eight operational modes, the cor-
responding task graphs have been extracted from the above given references.
The individual applications have been software profiled to gather the necessary
execution characteristics of each task. This was carried out by compiling profile
information into the application [1, 3] and running the produced software on
real-life input streams. On the other hand, the hardware estimations are not
based on direct measurements, but have been based on typical values, such that
hardware tasks typically executed 1 to 2 orders of magnitude faster and dissi-
pated 1 to 2 orders of magnitude less power than their software counterparts
[35]. Depending on the operational mode, the number of tasks and communica-
tions varies between 5–88 nodes and 0–137 edges, respectively. The hardware
architecture of the embedded system within the smart phone consists of one
DVS-enabled processor (execution properties are based on values given for the
ARM8 developed in [34]) and two ASICs. These components are connected via
a single bus. Tables 5.4 and 5.5 give the results of the conducted experiments,
distinguishing between optimizations without and with the consideration of
DVS.

Energy-Efficient Multi-Mode Embedded Systems 129

Table 5.5. Smart phone experiments with DVS

Similar to the previous experiments, approaches which neglect the execution
probabilities are compared with the introduced co-synthesis technique that con-
siders the uneven activation times of different modes. Table 5.4 shows this com-
parison for a fixed voltage system, i.e., no DVS is applied. The table provides
information regarding all 8 modes of the smart phone. This mode information
includes benchmark properties such as complexity, execution probability, and
hyper-period. Furthermore, the table gives the achieve energy dissipation for the
mode hyper-period and average power consumption of each mode. The average
power consumption can be calculated from the energy values by dividing the
energy by the hyper-period and multiplying the result with the execution proba-
bility. Synthesizing the system without consideration of execution probabilities
results in an overall average power consumption of 2.6022mW, when running
the system after the synthesis according to the activation profile. Nevertheless,
taking into account the mode usage profile during the co-synthesis this can be
reduced by 30.76% to 1.8011mW. Please note that the given overall average
power consumption is calculated based on Equations (5.1)–(5.4); hence, these
values are directly proportional to the battery-life time. The saving is achieved
without the modification of the allocated hardware architecture, therefore, the
system cost is the same for both solutions.

Also DVS has been applied to this benchmark, considering that the GPP
of the given architecture supports DVS functionality. The results are shown
in Table 5.5. It can be observed that the overall average power consumption
of the smart phone drops to 1.2176mW, even when neglecting mode exe-
cution probabilities. However, the combination of applying DVS and taking
execution probabilities into account results in the lowest power consumption
of 0.8587mW, a 29.5% reduction, when compared to the activation profile
neglecting approach. That is, solely by considering the activation profile dur-
ing the synthesis, the battery-life time could be extended by one third, even

130 SYSTEM-LEVEL DESIGN TECHNIQUES

when using a system that employs DVS components. Overall, the average
power is decreased from 2.602mW to 0.859mW, which represents a signifi-
cant reduction of nearly 67%. Regarding the required co-synthesis times, the
four implementations could be found in 80.1s (without probabilities and DVS)
to 4344.8s (with probabilities and DVS). Clearly, considering DVS requires
longer optimization times due to the voltage scaling problem that needs to be
solved repetitively within the innermost optimization loop of the co-synthesis
algorithm. For instance, the optimization for DVS increases the run-time from
80.1s to 3754.1s for the case without consideration of execution probabilities,
and from 96.9s to 4344.8s when execution probabilities are taken into account.
On the other hand, the consideration of mode execution probabilities increases
the optimization time only moderately form 80.1s to 96.9s in the case of no
DVS, and from 3754.5s to 4344.8s if the probabilities are considered.

Figure 5.15. Energy dissipation of the Smart phone using different optimisation strategies

5.7 Concluding Remarks
This chapter has introduced new techniques and algorithms for the energy

minimisation of multi-mode embedded systems. An abstract specification
model called operational mode state machine has been proposed. This model
allows for the concurrent specification of mode interaction (top-level finite state
machine) as well as mode functionality (task graph). The advantage of such
a representation is the capability to express the complete functionality of the
system within a single model, containing both control and data flow.

The presented co-synthesis technique not only optimises mapping and schedul-
ing towards hardware cost and timing behaviour, but also aims at the reduction of
power consumption at the same time. A key contribution in this chapter has been
the development of an effective mapping strategy that considers uneven mode

Energy-Efficient Multi-Mode Embedded Systems 131

execution probabilities as well as important power reduction aspects, such as
multiple task implementations and core allocation. For this purpose a GA based
mapping approach has been proposed along with four improvement strategies
to effectively handle the optimisation of component shutdown, transition time,
area usage, and timing behaviour. These improvement strategies guide the map-
ping optimisation of multi-mode specifications towards high quality solutions
in terms of power consumption, timing feasibility, and area usage. Further-
more, these strategies help to reduce the optimisation times needed by conven-
tional genetic algorithms, since they use computational inexpensive constructive
heuristic in a local search fashion. A newly introduced transformational-based
algorithm for DVS-enabled hardware components, which is capable of perform-
ing parallel task execution, allows to easily leverage the efficiency of existing
voltage scaling algorithms. This algorithm transforms a set of potentially paral-
lel executing tasks on a single HW component into a set of sequential executing
tasks, taking into account imposed deadlines and inter-PE communications.

The proposed techniques and algorithms have been validated through ex-
tensive experiments including a smart phone real-life example. These experi-
ments have demonstrated that taking into account mode execution probabilities
throughout the system synthesis leads to substantial energy savings compared
to conventional approaches which neglect this issue. Furthermore, DVS has
been considered in the context of multi-mode embedded systems and it was
shown that considerably high energy reductions can be achieved by combining
both the consideration of execution probabilities and dynamic voltage scaling.

Notes
These examples were generated with the publicly available tool TGFF [48].1

Chapter 6

DYNAMIC VOLTAGE SCALING FOR CONTROL
FLOW-INTENSIVE APPLICATIONS

BY DONG WU, BASHIR M. AL-HASHIMI, AND PETRU ELES

Up to now, the applications that have been addressed in this book are con-
sidered to be data-flow dominated. Such applications (e.g. voice encoding
and decoding, image and video processing) can be accurately modelled using a
task graph representation with the opportunity to express limited control-flow
inside each task specification. However, for applications with an extensive,
global control-flow, models such as the conditional task graphs (CTG) 1 [51,
159] represent an adequate choice, since they allow a more precise and thor-
ough capturing of this type of system behaviour. One major problem in the
presence of control flow is the uncertainty regarding which tasks on different
control-paths will be scheduled at run-time, i.e., scheduling decisions in terms
of voltage settings and task executions have to be taken during the execution of
the application.

In this section, we will concentrate on dynamic voltage scaling and schedul-
ing approaches for applications that are captured through conditional task graphs.
The chapter is organised as follows: Preliminaries regarding the CTG model
and current scheduling techniques for applications modelled as CTGs are in-
troduced in Sections 6.1 and 6.2. The problems involved in dynamic voltage
scaling of CTG specifications are outlined in Section 6.3. This is followed
by a dynamic voltage scaling approach for applications modelled by CTGs in
Section 6.4. Conclusions are drawn in Section 6.5.

6.1 The Conditional Task Graph Model
In this chapter, we consider that an application has been specified as a di-

rected, acyclic graph called Conditional Task Graph (CTG) [50,
51]. An example CTG is shown in Figure 6.1(a). In this model, each vertex rep-
resents a tasks These tasks are connected through two different types
of edges, denoted as unconditional edges and conditional edges The

133

134 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 6.1. Conditional Task Graph and its Tracks

set of unconditional edges and the set of conditional edges are disjoint
and form together the set of all edges i.e., and
Similar to the task graph model introduced in Section 1.2.1, an edge
indicates that the output of task is required as input to task The main
difference between the conditional task graph model used in this chapter and
the previous task graph model is the additional existence of conditional edges,
indicated with thick lines in Figure 6.1. Each conditional edge is asso-
ciated with a condition value. In order to perform a transition on such an edge,
the condition value has to be true. For instance, depending on the outcome of
task the condition value A or is produced. Accordingly, either task (if
A is true) or task (if is true) is executed next. Nodes with outgoing condi-
tional edges are denoted as disjunction nodes (and in Figure 6.1 (a)), while
alternative paths starting from the same disjunction node meet in a conjunction
node (and in Figure 6.1 (a)). A conjunction task can start its execution
after the input of one of its alternative paths has arrived, as opposed to all other
tasks which can be activated only after all their inputs have been received. De-
pending on the condition values, there exist different tracks through the CTG
that may be followed during the execution. Clearly, as the condition values
are only produced during run-time of the application, the actual tracks that are
followed are unknown before execution. Nevertheless, all possible tracks can
be identified before run-time. For instance, the Figures 6.1 (b)–(d) show the
three possible tracks of the CTG given in Figure 6.1 (a). The execution delay of
one instantiation of the CTG is given as the difference between the time when
the sink node terminates execution and the start time of the source task. For
instance, consider the CTG in Figure 6.1 (a) and its three execution tracks shown
in Figures 6.1(b)–(d). The numbers beneath each node indicate the execution
time of that particular task (assuming a given mapping). In addition, the CTG
is associated with a timing constraint (repetition period) which represents the

Dynamic Voltage Scaling for Control Flow-Intensive Applications 135

Table 6.1. Example Schedule Table for the CTG of Figure 6.1(a)

deadline of the sink node. For simplicity, we ignore here the additional delay
imposed by communications between tasks.

A suitable application for a CTG specification could be, for example, an
MPEG video decoder which reconstructs a video from a stream of “intra” pic-
tures (I-frame), “predictive” pictures (P-frame), and “bidirectionally-predictive”
pictures (B-frame) [149, 151]. While I-frames are coded without reference to
other pictures (using similar techniques that are used for the compression of
still images), P-frames and B-frames make use of the motion compensation
technique to achieve a higher compression ratio. Accordingly, the CTG speci-
fication for such a decoder should use three alternative tracks, each responsible
for the decoding of a certain frame type. The deadline of the CTG is set corre-
sponding to the required frame rate. We refer the interested reader to [50, 51],
where further details regarding the CTG model can be found.

6.2 Schedule Table for CTGs
During run-time, at each activation, a subset of tasks of the CTG is exe-

cuted depending on the condition values that determine the actual track through
the CTG. A scheduling algorithm for mapped conditional task graphs was in-
troduced in [50]. The main aim of this technique is the minimisation of the
worst case execution delay. The algorithm generates a schedule table. The pro-
duced schedule table contains task activation times for all nodes in the CTG,
depending on the possible condition values. An example schedule table is
given in Table 6.1, which is based on the execution times and mappings given
in Figure 6.1(a). Each row in the schedule table corresponds to one task and
represents the start time and end time for that task. Further, each column in the
table corresponds to a logical expression which is constructed as a conjunction
of condition values. Accordingly, the table holds the schedules for all possible
tracks depending on the condition values. The execution tracks given in Fig-
ures 6.1(b)–(d) are represented in the table as follows: The schedule of track 1
is given in the columns true and A, i.e., task runs from 0 to 10ms, while tasks

136 SYSTEM-LEVEL DESIGN TECHNIQUES

and are active (if A is true) from 10–15ms and 15–20ms, respectively.
Similarly, the schedule of track 2 is captured in columns true, and
And finally, track 3 corresponds to columns true, and

The schedule table stores the quasi-static schedule of the system that is spec-
ified by a CTG for a given mapping of tasks. The off-line computed schedules,
which are captured within the schedule table, are activated according to the
condition values that are produced during run-time of the application. The
real-time kernels running on each processing element will take the decisions
regarding task activation depending on the condition values.

It should be noted that the scheduling is performed statically and not at
run-time (on-line). The scheduling algorithm traverses the CTG, analysing the
possible alternative tracks and considering for each track only the tasks that are
activated for the respective condition values. Using a depth-first search, the
algorithm generates the schedule table by proceeding along a binary decision
tree that corresponds to alternative tracks [50]. Additionally, if dynamic voltage
scaling is considered in the context of CTGs, it is necessary to associate a supply
voltage with each task execution that determines at which speed and energy cost
the specific task is executed. This is necessary in order to reduce the energy
consumption to a minimum, while meeting imposed task deadlines. A suitable
voltage scaling technique is introduced in the next section.

6.3 Dynamic Voltage Scaling for CTGs

The problems of dynamic voltage scaling in the context of CTGs are il-
lustrated next, using the CTG shown in Figure 6.1 (a). For the sake of this
example, consider that the deadline of the CTG is set to 30ms. The three possi-
ble schedules are depicted in Figure 6.2 as Gantt-diagrams for both processors
of the embedded system. These three schedules correspond to the three pos-
sible tracks given in Figures 6.1(b)–(d). The schedules have been produced
with the aim to reduce the worst case delays as much as possible (using the
algorithm presented in [50]). As we can observe from the Figures 6.2(a)–(c),
the amount of slack time that is exposed in the schedules varies with each track.
For instance, track 1 offers 10ms of slack, while track 2 and track 3 reveal
8ms and 4ms of slack. Clearly, the amount of available slack varies during
run-time depending on the condition values. In addition to the timing informa-
tion, the Figures 6.2(a)–(c) give the energy consumption of each track, under
the assumption that both processing elements have an active power dissipation
of 5W at the nominal voltage of 3.3V. Take for example track 1. Its energy
dissipation is given by 5W · (10ms + 5ms + 5ms) = 100mJ. One possible
way to exploit the slack that is exposed in the schedules of Figures 6.2(a)–(c),
is to stretch the execution as much as possible, such that they fit the imposed
deadline. The required scaling factor is calculated as the ratio between the

Dynamic Voltage Scaling for Control Flow-Intensive Applications 137

Figure 6.2. Schedules of the CTG of Figure 6.1 (a) (in this figure corresponds to tasks

deadline and the length of the schedule. As an example, the scaling factor of
track 1 is given by 30ms/20ms = 1.5, that is, each task execution time can be
prolonged by 1.5 without violating the specified deadline. In a similar fashion,
the scaling factors for tracks 2 and 3 can be calculated as 30ms/22ms = 1.364
and 30ms/26ms = 1.154. The scaled schedule for each track is given in
Figures 6.3(a)–(c). The schedules give the energy consumption of each track,
assuming that the PEs’ nominal supply voltage is 3.3V. In Figure 6.3(a), for
example, the extension from 20ms to 30ms allows us to decrease the supply
voltages of both processing elements to 2.62V (in accordance to Equation (3.2)
with given by the scaling factor and a threshold voltage of 0.8V). Thereby,
reducing the energy dissipation from 100mJ to 62.9mJ, based on:

which can be derived from Equation (2.6). Coming back to the schedules given
in Figure 6.3, we can observe that the execution time of task differs on all
three tracks, since the different amounts of slack time are exploited through
different voltage settings (processors performances), that is, one and the same

138 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 6.3. Schedules scaled for energy minimisation

task is executed at a different voltage depending on the executed track. On
track 1 it runs from 0 to 15ms, while on tracks 2 and 3 the execution runs from
0 to 13.6ms and from 0 to 11.5ms, respectively. Clearly, these execution times
depend on the particular track and, by this, on the condition values which are not
known in advance. Thereby, if the supply voltages and implicitly the execution
times of tasks are not chosen properly, the system’s timing constraints might
be violated. To outline this in more detail, consider Figure 6.4. If, for instance,

Figure 6.4. Improper scaling with violated timing constraint

task is executed from 0 to 15ms using the voltage setting for track 1 and
the condition values turn out to be at run-time (that is, track 3), the

Dynamic Voltage Scaling for Control Flow-Intensive Applications 139

imposed deadline of 30ms will be missed, even when running the remaining
tasks at maximum supply voltage. Thus, in order to exploit as much slack time
as possible and, at the same time, meet the imposed timing constraints of the
system, the worst case slack time should be identified dynamically. The worst
case slack time is the maximum slack that can be distributed to a task such
that no timing constraints are violated, no matter what schedule decisions are
taken later (depending on the condition values). The goal of the DVS technique
for CTGs introduced in this chapter, is the voltage selection such that, under
any possible set of condition values, system deadlines are met and the energy
consumption is minimised.

6.4 Voltage Scaling Technique for CTGs
In this section, we introduce a voltage scaling technique for applications that

are specified as conditional task graphs (CTGs). The main principle behind
the introduced approach is the identification of the available worst case slack,
taking into account the conditional behaviour of the CTGs. This is achieved
by dynamically identifying the worst case track, calculating a suitable scaling
factor (i.e., the ratio between the deadline and the total length of the schedule),
and adjusting the schedule table after a disjunction node (a node producing a
condition value) has been scheduled. The initial schedule table, which is the
input to the DVS technique introduced here, is produced using the approach pre-
sented in [50]. While the approach in [50] minimises the worst case execution
delay, the introduced DVS technique produces a modified schedule table that
indicates scaled voltages and activation times such that deadlines are fulfilled
and the energy savings are optimised.

The introduced voltage scaling strategy is based on the idea to leverage the
information concerning condition values that is available at a certain moment,
in order to apply the largest possible scaling factor while still guaranteeing to
meet the system deadlines. Such information regarding the conditional values
becomes available whenever the execution of a disjunction node ends. Conse-
quently, early in the scheduling process, more conservative scaling factors are
applied, while with every available condition value, refined scaling factors can
be calculated. For instance, if a disjunction node has been scheduled and for
a certain track a longer slack than the one previously used can be identified,
then this new slack can be taken to recalculate the applicable scaling factor. Of
course, this increased scaling factor will further minimise the energy consump-
tion compared to the previous (more conservative) scaling factor. According to
this observation, the schedule of a CTG is divided into several scaling regions
corresponding to the disjunction nodes. Each of the scaling regions is scaled
with a certain, suitable scaling factor that will guarantee the fulfilment of timing
constraints as well as the minimisation of the energy consumption. Examining
Table 6.1, we can see that the schedules of the tasks in each of the columns

140 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 6.2. Schedule Table for the CTG of Figure 6.5

correspond to such scaling regions. Please note, however, that columns in the
initial schedule tables do not necessarily correspond to scaling regions directly.
Consider the following situation: The CTG shown in Figure 6.5 is executed with
condition value A and has to fulfil a timing constraint of 15ms. According to

Figure 6.5. CTG with one disjunction node

schedule table 6.2, the resulting schedule is depict in Figure 6.6(a). As we
can see from the schedule, task is executed in parallel with disjunction task

which finishes execution before task i.e., a condition value becomes
available during the run-time of task In our case, task produces condition
value A; thereby, selecting the corresponding track on which we can find task

Now that the track and the available worst case slack are given, it is possible
to recalculate the scaling factor in order to make use of the additional slack.
The scaled schedule and the corresponding scaled schedule table are given in
Figure 6.6(b) and Table 6.3, respectively. As we can observe from the table,
task belongs to three scaling regions, one before the end of disjunction task

and two after.
In order to apply DVS without the violation of deadlines, it is necessary to

identify scaling regions delimited by the end times of disjunction nodes and to
scale the schedules of the tasks in each region after determining the available

Dynamic Voltage Scaling for Control Flow-Intensive Applications 141

Figure 6.6.

Table 6.3. Scaled Schedule Table for the CTG of Figure 6.5

slack and the appropriate scaling factor. A drawback of this scaling technique
is that the tasks on the non-critical paths cannot take advantage of all available
slack, as shown, for example, in Figure 6.6(b). Since task does not lie on
the critical path (which is given by and it is not scaled to
its full potential when using the scaling factor calculated for the worst case
execution. Thereby, task finishes execution at 8.3ms, although its execution

142 SYSTEM-LEVEL DESIGN TECHNIQUES

Algorithm: DVS technique for CTGs
Input:

Output:

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:

conditional task graph CTG
initial schedule table (unscaled) SchTable
deadline
scaled schedule table ScaledSchTable
(voltage level + activation times)

pre-process SchTable
forall (columns col in SchTable, from left to right)
{

find worst case track
calculate the worst case slack
calculate the slack distributable to column col as
scale col with scaling_factor (according to Equation (6.2))
exploit slack on non-critical paths
update SchTable

}

Figure 6.7. Pseudo-code: Voltage scaling approach for CTGs

Table 6.4. Pre-processed schedule table

is only required to finish after 11.6ms, in order to meet the timing constraint.
This results in an additional slack s3, which can be exploited to further reduce
the energy dissipation. The resulting schedule, after exploiting the additional
slack, is shown in Figure 6.6(c).

The pseudo-code of the voltage scaling algorithm for CTG specifications is
given in Figure 6.7. We explain this algorithm in more detail next. The initial
schedule table is pre-processed in step 01, so that each column corresponds
to a scaling region. Practically, this involves the splitting of certain tasks, in
order to distribute them over several columns. For instance, Table 6.4 shows
the first three lines of the pre-processed schedule table, corresponding to the
initial schedule table 6.2. As we can observe, parts of task are additionally
distributed over columns A and This is because the condition value computed
by task becomes available after 4ms, i.e., a scheduling decision in terms of
performance (voltage) can be taken at this point.

Dynamic Voltage Scaling for Control Flow-Intensive Applications 143

The steps 04 to 09 apply voltage scaling to all columns in SchTable, in a
left-to-right order. Firstly, step 04 finds all possible tracks that are followed
after the condition values heading col are known. Additionally, out of the
found tracks, the longest track (in terms of time) is identified. This track is
denoted as worst case track Depending on this worst case track,
step 05 calculates the worst case slack time which is given by the
difference between the CTG deadline and the end time of the worst case
track In step 06, the slack time distributable to column
col is calculated by distributing to the columns along in
proportion to the column’s duration (the difference between the latest end time
and the earliest start time of the tasks in the column). Column col is then scaled
with a scaling_factor, in step 07:

where is the duration of column col. Slack on non-critical paths
is exploited in step 08. And finally, step 09 has to update the contents in the
columns that are subsequent to the scaled column col along all possible tracks.

In order to outline this scaling process in more detail, we will illustrate the
function by scaling schedule table for the CTG given in Figure 6.1 (a). The initial
schedule table is given in Table 6.1. For simplicity we skip here step 01, since
the columns already correspond to scaling regions. Let us start now with column
true. Step 04: Considering that no condition value is available yet, there exist
three possible tracks: track 1, track 2, and track 3 (shown in Figures 6.1(b)–(d)
and Figures 6.2(a)–(c)). Since track 3 reveals the longest execution time with
26ms (compared to 20ms and 22ms of the tracks 1 and 2), it is marked as the
worst case track. Step 05: Based on the timing constraint of 30ms, the worst
case slack can be calculated as 30ms – 26ms = 4ms. Step 06: The slack time
that is distributed to column true is then calculated as 4ms · (10ms/26ms) =
1.538ms, where the 10ms is the column’s duration and 26ms is the worst case
track execution time. Step 07: According to Equation (6.2), the task in column
true, is scaled with a factor of (10ms+1.538ms) /10ms = 1.1538. Step 08:
Column true has no non-critical path, hence this step is skipped. Step 09: The
successive columns of column true, i.e., the columns which can be executed
from column true, are column A for track 1, columns and for track 2,
as well as columns and for track 3. Therefore, the schedules of
these three columns require updating due to the scaling of column true. After
applying steps 04–09, Table 6.5 is produced. Starting from the produced table
and repeating the steps 04–09 for column A, Table 6.6 is generated. Here the
tasks placed in column A, i.e. and are both extended by 4.25ms. The final
schedule table shown in Table 6.7 is generated after applying the Steps 04–09
for the columns and separately.

144 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 6.5. Result after processing column true (values are rounded)

Table 6.6. Results after processing column A

Table 6.7. Final schedule table (scaled)

Based on the final schedule table 6.7, Figures 6.8(a)–(c) give the actual,
scaled schedules of the three possible tracks of the CTG from Figure 6.1. It
can be seen that these schedules meet the imposed system deadline and, at the
same time, reduce the energy consumption. Furthermore, we can observe by
comparing the schedules in Figure 6.3 and Figure 6.8 that the actual schedules
are different from the schedule in Figure 6.3, except for track 3, which is the
worst case track. It is of utmost importance to stress the fact that the schedules

Dynamic Voltage Scaling for Control Flow-Intensive Applications 145

Figure 6.8. Actual, scaled schedules

of tracks 1 and 2 in Figure 6.3 are impracticable! This has the following reason:
The schedules shown in Figure 6.3 have been produced under the assumption
that the condition values are known before actually executing the disjunction
tasks. This is, of course, impossible. In reality, the condition values become
available only after the disjunction tasks have finished their execution; hence, it
is not possible for an on-line voltage scheduling technique to immediately use
this information to achieve timing feasible and energy-efficient voltage settings.

6.4.1 Experimental Results
The DVS technique introduced in this chapter has been tested on a number of

CTG examples to demonstrate its capability to produce high quality solutions
in terms of energy-efficiency. The examples consist of two sets:

146 SYSTEM-LEVEL DESIGN TECHNIQUES

(a) A real-life vehicle cruise controller, taken from [50]. The CTG model of
this controller contains 32 tasks, 35 edges, and 2 conditions. The underlying
system architecture, onto which the system specification has been mapped,
consists of 5 processing elements connected via a communication bus. In
the following experiments, we assume that these processing elements are
DVS-enabled and

(b) The second benchmark set contains 15 generated CTG examples (ctg1–
ctg15), with various degrees of complexity in terms of number of tasks,
edges, conditions, and processing elements.

The following experiments are split into two groups: Firstly, we investigate
the DVS technique for CTGs that has been introduced in this chapter. Secondly,
we have conducted a set of experiments to outline the influence of mapping in
the context of CTG system specifications and DVS.

DVS Technique for CTGs
To test the effectiveness of the proposed DVS technique, we have generated
initial schedules for each of the benchmark examples and then applied the in-
troduced voltage scaling technique to it. The results of the real-life example
are shown in Table 6.8 for different deadlines. As we can observe from the

Table 6.8. Results of the real-life example

table, without relaxing the deadline, the energy consumption is reduced from
440.00mJ to 355.15mJ when using the introduced DVS technique. This repre-
sents a reduction of 19.28%. Furthermore, by relaxing the deadline, the energy
savings are increased since more slack becomes available, which can be ex-
ploited through dynamic voltage scaling. For instance, increasing the deadline
by 20%, reduces the energy dissipation to 288.87mJ, a reduction of 34.35%.

The results for the generated, hypothetical examples are given in Table 6.9.
For these experiments the deadline was set to 110% of the original deadline.
Similar to the previous experiment, the mapping has not been optimised in this
investigation, but we consider an implicitly given mapping generated randomly
together with the conditional task graph. We can observe that the introduced
voltage scaling technique is capable to effectively reduce the energy dissipation
of each benchmark. For instance, in the case of ctg1 the energy dissipation
was reduced from 525.00mJ to 391.29mJ, corresponding to a 25.5% reduc-

Dynamic Voltage Scaling for Control Flow-Intensive Applications 147

Table 6.9. Results of the generated examples

tion. Similarly, the energy dissipation of ctg14 was reduced by 24.9% (from
1845.00mJ to 1385.54mJ).

Please note that the calculation of the energy dissipations was based on the
activation of all possible tracks given in the CTGs, i.e., an equal chance to
produce a certain condition was given to all condition values. For instance,
considering the CTG in Figure 6.1, track 1 has a chance to be activated of
50%, depending on condition values A and While the tracks 2 and 3, which
additionally depend on condition values B and have both a chance of 25%
to the followed. Based on these probabilities, the overall energy dissipation
was calculated as a weighted average. Overall, this experiments have shown
that dynamic voltage scaling can be efficiently used for CTG specification in
which condition values are produced during the run-time of the application.

Mapping Optimisation

The following set of experiments demonstrates how dynamic voltage scaling
for CTGs can be improved through an appropriate mapping of tasks. For this
purpose the introduced voltage scaling technique was incorporated within the
mapping optimisation outlined in Section 4.2. The results are given in Ta-
ble 6.10, which shows the achieved energy reduction in percent and the required
optimisation times in seconds (using a PentiumIII 866MHz PC). As expected,

148 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 6.10. Results of the mapping optimisation

the energy dissipation of each benchmark could be further reduced when the
task mapping was optimised towards the exploitation of DVS (compared to the
original scheduling technique [50]). The achieved savings go up to 50.99%
in the case of benchmark ctg13. Of course, due to the iterative optimisation
nature of the genetic algorithm, which is used for the task mapping, the optimi-
sation times to achieve these increased savings are larger. The presented results
show how the introduced technique deals with CTGs that have up to 4 condition
values (realistic for some real-world applications). Through additional experi-
ments have shown that CTGs with 8 conditions and 125 tasks require around 3
hours of optimisation time, which is due to the enlarged search space.

6.5 Conclusions
This chapter has demonstrated that dynamic voltage scaling can be effi-

ciently exploited in the presence of CTG system specifications that model the
functionality of data and control dominated applications. The introduced DVS
technique exploits the slack time, taking into account the conditional behaviour
of the CTGs. Voltage and performance are scaled in such a way that deadline
constraints are fulfilled. This is ensured by considering the worst case track,
and scaling the tasks conservatively since condition values are only produced
during run-time of the application.

Dynamic Voltage Scaling for Control Flow-Intensive Applications 149

Notes
1 Originally called conditional process graphs.

Chapter 7

LOPOCOS: A PROTOTYPE LOW POWER
CO-SYNTHESIS TOOL

Chapters 3, 4, 5, and 6 have described a number of new techniques for
the design of energy-efficient distributed embedded systems. The main aim
of this chapter is to show how these techniques can be used to explore the
architectural design space with the intention of finding high quality system-
level designs. The intention of the architectural design space exploration is
the identification of a suitable architecture that will be integrated inside a new
product, as outlined in Chapter 1. For this purpose the prototype co-synthesis
tool, LOPOCOS (Low Power Co-Synthesis), has been developed. LOPOCOS
incorporates the algorithms proposed in Chapters 3, 4, and 5. The overall goal
of LOPOCOS is to equip system designers with a tool that helps to effectively
explore different architectural implementations through an automated system-
level design process. Using LOPOCOS, it will be demonstrated how suitable
architectures (combinations of processing elements which are interconnected
via communications links) can be derived for a realistic smart phone example.
The smart phone example has been chosen because it is of sufficient complexity
to assess the capability of LOPOCOS in terms of real-world applicability.

The remainder of this chapter is organised as follows. Section 7.1 discusses
the smart phone applications and their representations as task graphs. Sec-
tion 7.2 introduces LOPOCOS and demonstrates its usage for architectural
design space exploration. Finally, Section 7.3 provides some concluding re-
marks.

7.1 Smart Phone Description
Emerging smart phones often combine cellular phones, digital cameras, and

MP3 players into a single device. The specification through task graphs of such
a smart phone is described in this section. The section is split into three subsec-
tions which briefly outline the applications used within the smart phone. Sec-

151

152 SYSTEM-LEVEL DESIGN TECHNIQUES

tion 7.1.1 describes the voice compression and decompression algorithms used
within GSM (Global System for Mobile Telecommunication) cellular phones.
Section 7.1.2 details the decompression algorithm used for the MP3 audio files.
And finally, Section 7.1.3 provides information about the JPEG image compres-
sion and decompression standard. These applications and their combinations
are used to model the different modes in the operational mode state machine of
the smart phone (Figure 5.1, Page 101).

7.1.1 Voice Compression and Decompression
For reasonably good communications, the human voice has to be sampled

at 8kHz and quantised with at least 13bit. Thus, the transmission of one
second of human voice requires a data transfer of 13000bytes. To reduce this
amount of data, GSM cellular phones compress voice streams using regular
pulse excitation long-term predictor full-rate speech transcoders, or short RPE-
LTP transcoders. These transcoders model the human voice system through two
filters, the linear-predictive short-term filter and the long-term predictive filter.
Figure 7.1 shows block diagrams of the encoder and the decoder units. The

Figure 7.1. Block diagram of the GSM RPE-LTP transcoder [73]

encoder divides the incoming voice signal into short-term predictable parts,
long-term predictable parts, and the remaining residual pulse. The resulting
parameters of the filters and residual pulse are quantised and encoded. Using this

LOPOCOS: A Low Power Co-Synthesis Tool 153

compression technique, the 13000byte/s data stream is reduced to 1625byte/s,
a compression ratio of 8 to 1. Upon receiving the encoded voice stream, the
decoder decompressed the parameter settings for the filters and the residual
pulse. Using these settings the “original” voice signal is reconstructed. A
publicly available C implementation of the GSM transcoder was developed by
Degner et al. [4]. From this description the task graphs for the encoder and the
decoder were derived, in order to permit their usage for the co-synthesis. The
derivation of the task graph requires careful consideration of several aspects,
including:

Loop unrolling: In order to reveal parallelism in the application, complex
loops with a fixed iteration counts can be unrolled and split into several
tasks.

Function collapsing: Several trivially small sub-functions are collapsed into
single tasks.

Data flow extraction: Memory variables that are shared among functions are
transformed into data dependencies between tasks.

Figures 7.2 and 7.3 show the extracted task graph specification of the GSM
encoder and decoder. The encoder consists of 53 tasks and 80 edges, while
the decoder is given by 34 tasks and 55 data dependencies. In accordance
to the input frame size of 160 samples (each covering one sample period of
8kHz), both algorithms need to be performed with a repetition rate of 20ms.
If these rate cannot be satisfied, frames are dropped, and each dropped frame
corresponds to a voice gap of 20ms, which seriously affects the quality of the
communication.

In order to estimate the execution properties of each task, the specifications
have been software profiled (assessment of function calls and time spend in
each function) using several realistic input voice streams. The exact details
about the task graph specifications and the used technology files are omitted
here, due to space limits.

7.1.2 MP3 Decoder
MP3 (MPEG-1 Audio Layer 3) has become the de facto standard for the

compression of music audio signals. Using a bit stream of 128kbps, music
can be stored in near-CD quality. The block diagram shown in Figure 7.4
outlines the functionality of the decoder. Each input frame contains a header
and the signal samples. The header describes the encoding parameters such as
sample frequency, stereo (mono) signal, and the block type, while the signal
samples represent the encoded audio information. In the first step of the MP3
decoder, the input frames are separated into header and samples. The samples
are passed to the Huffman decoder and are deqantised to derive the coefficients

154 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 7.2. Task graph of the GSM voice encoder

LOPOCOS: A Low Power Co-Synthesis Tool 155

156 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 7.4. Block diagram of the MPEG-1 layer 3 audio decoder

for the inverse cosine transformation (IDCT). The outcome of the IDCT is
fed into the sub-band synthesis filter which reconstructs the “original” audio
signal from different frequency sub-bands. Similar to the GSM transcoder, the
task graphs specification was derived from a publicly available MP3 decoder
implementation [72]. The task graph representation was introduced in Chapter 1
(Figure 1.3, Page 7). It consists of 17 tasks and 18 data dependencies. To ensure
an uninterrupted audio signal of high quality at the output, the execution of all
tasks in the graph has to be repeated every 25ms. Execution properties were
extracted through the profiling of several real music files.

7.1.3 JPEG Image Compression and Decompression
The JPEG compression standard is a transformation-based encoding tech-

nique that significantly reduces the required storage space of digital images
[149]. Inside the smart phone, the JPEG encoder is responsible for the effi-
cient storage of images that are taken with the integrated digital camera. The
taken photos do not only need to be stored in compressed form within the smart
phone memory, but also need to be restored upon user requests. Block diagrams
of both compression and decompression are shown in Figure 7.5. The input

Figure 7.5. Block diagram of the JPEG encoder and decoder [149]

to the encoder consists of image sub-blocks with a size of 8x8 pixels. In the
first stage a discrete cosine transformation (DCT) is applied. The goal of the
DCT is to redistribute the signal energy to a small set of transformation coeffi-
cients. This allows to nullify many of the coefficients during the quantisation,

LOPOCOS: A Low Power Co-Synthesis Tool 157

which, in turn, enables an efficient encoding to reduce the storage require-
ments. The decoder inverts these three steps to reconstruct the image. Due to
the quantisation/dequantisation this compression scheme belongs to the class of
lossy encoding techniques, i.e., during the encoding some information is “lost”
which results in degradation of the image quality. The JPEG library used in
smart phone is also publicly available [5]. The corresponding task graphs are
given in Figure 7.6, where the sequential nature of the graph can be observed.
The encoder needs to store four photos per second to allow a quick series of

Figure 7.6. Task graphs of the JPEG encoder and decoder

shots. Hence, the repetition rate should match 20µs for the an image size of
1024x768 pixels. The repetition rate of the decoder, on the other hand, needs to
be at least 40µs in order to restore images within half a second. Similar to the
GSM codec and the MP3 decoder, the JPEG encoder and decoder have been
profiled on realistic input streams (i.e., photos) to extract task characteristics in
terms of execution time.

7.2 LOPOCOS
LOPOCOS is a prototype co-synthesis tool that incorporates the algorithms

proposed in Chapters 3, 4, and 5. The aim of this section is to show how
LOPOCOS can be used for architectural design space exploration. Using the
smart phone applications introduced in Section 7.1, the goal of the design space
exploration is the identification of an architecture (processing elements con-
nected through communication links) that fulfils the performance requirements

158 SYSTEM-LEVEL DESIGN TECHNIQUES

and area constraints on one hand, and minimises the energy dissipation and
system cost on the other. Figure 7.7 gives an overview of the design flow used
within LOPOCOS. The input to LOPOCOS consists of three ASCII files, which
contain the following information:

System specification given as task graphs and operational mode state ma-
chine (in the case of multi-mode embedded systems).

Technology library containing the available system components that can be
used to compose a target architecture. The library describes the execution
properties (e.g., execution time, area requirement, dynamic power) of each
task when executed on a certain components, as shown Table 7.2. Further-
more, it provides static properties of the available components (e.g., price,
static power consumption, area), as given in Table 7.1.

Initial architecture which is allocated based on the designers knowledge.

(a)

(b)

(c)

After parsing the above introduced files and establishing the necessary data
structures, LOPOCOS applies the proposed algorithms for mapping, schedul-
ing, and dynamic voltage scaling, which have been introduced in Chapters 3,
4, and 5. Once the optimisations have been finished, an output file is produced
that contains the following information:

(a)

(b)

(c)

(d)

(e)

(f)

Mapping of tasks and communications to the active components.

Schedule for the system activities.

Scaled supply voltage for tasks executing on DVS-enabled processing ele-
ments.

Dynamic and static power consumptions.

Design quality metrics in terms of cost, area violations, and timing penalties.

General information about the synthesis run, such as number of timing
infeasible and area infeasible solutions produced during the optimisation.

In the case of multi-mode systems, this output is provided for each opera-
tional mode. Furthermore, LOPOCOS returns the above information as a set
of Pareto optimal solutions, i.e., several not dominated solutions with different
area/energy trade-offs from which the designer can choice the most suitable
design.

In order to demonstrate the tool-assisted architectural design space explo-
ration, the remainder of this section is split into two subsections. Section 7.2.1
describes briefly the necessary input files and goes into the details of the library
organisation. Section 7.2.2 outlined the usage of LOPOCOS for architectural
exploration.

LOPOCOS: A Low Power Co-Synthesis Tool 159

Figure 7.7. Design flow used within LOPOCOS

160 SYSTEM-LEVEL DESIGN TECHNIQUES

7.2.1 Input Descriptions
Before the system-level synthesis process can be started, it is necessary to

establish the system specification as well as the technology library. The organ-
isation of these files is explained next.

System Specification

Within LOPOCOS the system behaviour is modelled as an operational mode
state machine (OMSM). That is, the overall system functionality is represented
as top-level finite state machine, and each state is further described as a set of task
graphs (as discussed in Chapter 5). Note, in the case of a single mode system,
the OMSM consists of a single state and a single task graph. However, the
OMSM for the smart phone example models the interaction of eight operational
modes with 20 possible transitions (refer to Figure 5.1, page 101). The file
description of this OMSM is given in Figure 7.8, which shows the 20 mode
transitions in the lines 3–22. Each of these entries corresponds to a single mode

1 # Possible mode transitions

2

3

4
5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

FromMode

(0

(1
(1

(1
(1

(1

(2

(2

(2

(2

(3

(3

(4

(4

(5

(5

(6

(6

(7

(7

Mode execution probabilities
The sum of probabilities should equal
Mode0: 0.09
Mode1: 0.74

Mode2: 0.01
Mode3: 0.02

Mode4: 0.02
Mode5: 0.10

Mode6: 0.01

Mode7: 0.01

--->
--->

--->

--->

--->

--->

--->

--->

--->

--->

--->

--->
--->
--->
--->
--->
--->
--->
--->
--->

ToMode

(1

(0

(2

(3

(4

(5

(1

(3

(6
(7

(4

(7

(1

(7

(1

(6

(2

(5

(2

(4

Maximal Allowed Transition Time

100

10

100

200

200

200

50

200

200

200

50

100

50

100

50
100

100

50

100

50

Figure 7.8. File description of the top-level finite state of the smart phone

LOPOCOS: A Low Power Co-Synthesis Tool 161

transition and additionally states the maximal allowed time for the transition.
For instance, line 7 refers to the mode transition from Radio Link Control
(mode 1) to Decode Photo + RLC (mode 4), which is invoked upon a user
request to restore photos, as shown in Figure 5.1. The maximal allowed time
for this transition is 200ms. Furthermore, the file shown in Figure 7.8 holds
the execution probability of the eight operational modes (line 27–34), towards
which the design is optimised.

In order to complete the system specification, the functionality of each oper-
ational mode has to be expressed as a task graph. An example file description of
a task graph is show in Figure 7.9. This task graph represents the functionality
of mode MP3 play + RLC. Since this mode fulfils two functions at the same
time, MP3 decoding and radio link control, it contains two task graphs (lines 6–
42 and line 47). The first graph represents the MP3 decoding consisting of
17 tasks and 18 edges between these tasks. This description corresponds to
the specification given in Figure 1.3 on Page 7. Consider, for instance, lines 9
and 10 in Figure 7.9 which represent the Huffman decoder tasks and in
Figure 1.3. The task type 40 (ttype) refers to a Huffman decoder, the earliest
possible start time (epst) of the tasks is not specified, and the tasks have no
imposed deadline (dtype:NON and Deadline:0). The edges between tasks are
given in the lines 25–42. For example, line 29 describes the data dependency
between tasks and i.e., the data which needs to be transfered from the
Huffman decoder to the dequantisation unit. The amount of data is given by
the edge type etype, e.g., etype:7 refers to 256 bytes.

Technology Library

In addition to the system specification given as OMSM and task graphs, LOPO-
COS requires the input of a technology library. This library contains modelling
information about the available system components (processing elements and
communication links). The overall goal of the co-synthesis is to appropriately
select components from this library to implement the system’s functionality
according to the system specification. The selected components form the target
architecture onto which the application is mapped and scheduled. Components
modelled in LOPOCOS are general-purpose processors (GPPs), application-
specific instruction-set processors (ASIPs), application-specific integrated cir-
cuits (ASICs), field-programmable gate arrays (FPGAs), communication links,
and memory modules. A small size example of a technology library is shown
Figure 7.10. It contains three different processing elements: an ARM7 DVS
processor (lines 1–17), an ASIC in 0.35µm technology (lines 18–34), and a
Xilinx Virtex II-pro FPGA (lines 35–51). Furthermore, a 16 bit wide commu-
nication bus (lines 52–58) and a standard 256kB memory module (lines 59–65)
are given. These components are modelled through two data sets: task inde-
pendent component parameters and task dependent parameters. The task in-

162 SYSTEM-LEVEL DESIGN TECHNIQUES

l HYPERPERIOD 0.025
2

1

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42
43

44

45

46
47

TOLERABLE_TIMING_PENALTY 1.1

MP3-DECODER

Task: (0 0)
Task: (0 1)
Task: (0 2)
Task: (0 3)
Task: (0 4)
Task: (0 5)
Task: (0 6)
Task: (0 7)
Task: (0 8)
Task: (0 9)
Task: (0 10)
Task: (0 11)
Task: (0 12)
Task: (0 13)
Task: (0 14)
Task: (0 15)
Task: (0 16)

Edge: (0 0)
Edge: (0 0)
Edge: (0 1)
Edge: (0 2)
Edge: (0 3)
Edge: (0 4)
Edge: (0 5)
Edge: (0 6)
Edge: (0 7)
Edge: (0 7)
Edge: (0 8)
Edge: (0 9)
Edge: (0 10)
Edge: (0 11)
Edge: (0 12)
Edge: (0 13)
Edge: (0 14)
Edge: (0 15)

ttype: 46

ttype: 47

ttype: 47

ttype: 40

ttype: 40

ttype: 41

ttype: 41

ttype: 48

ttype: 49
ttype: 49

ttype: 50

ttype: 50

ttype: 43

ttype: 43

ttype: 51

ttype: 51

ttype: 52

--> (0 1)
--> (0 2)
--> (0 3)
--> (0 4)
--> (0 5)
--> (0 6)
--> (0 7)
--> (0 7)
--> (0 8)
--> (0 9)
--> (0 10)
--> (0 11)
--> (0 12)
--> (0 13)
--> (0 14)
--> (0 15)
--> (0 16)
--> (0 16)

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

epst: 0

etype: 6
etype: 6
etype: 6
etype: 6
etype: 7
etype: 7
etype: 7
etype: 7
etype: 7
etype: 7
etype: 7
etype: 7
etype: 7
etype: 7
etype: 7
etype: 7
etype: 7
etype: 7

dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: NON
dtype: HARD

Deadline: 0
Deadline: 0
Deadline: 0
Deadline: 0
Deadline: 0
Deadline: 0
Deadline: 0
Deadline: 0

Deadline: 0
Deadline: 0
Deadline: 0
Deadline: 0
Deadline: 0
Deadline: 0
Deadline: 0
Deadline: 0

Deadline: 0.025

GSM-RLC

Task: (1 0) ttype: 33 epst: 0 dtype: HARD Deadline: 0.025

Figure 7.9. File description of a single mode task graph

dependent parameters describe static values of components that are unaffected
by the executed functions. With reference to Figure 7.10, the task indepen-
dent parameters of the ARM7 processor are shown lines 5–8. According to the
first three entries, the processor has a price of $30, a static power dissipation
of 800µW, and a nominal operational frequency of 80MHz. A description
of all task independent component parameters is given in Table 7.1. The task

27

LOPOCOS: A Low Power Co-Synthesis Tool 163

Figure 7.10. Technology library file

#
== ** ARM7 DVS ** ==
#
@Gpp 0 {
price StPwr(uW) freq pins BEvSleep BEvIDLE AddsMem (32b)
30 800 80000 36 0.4 0.004 4294967296

DVS Vmax vt CommBuffer CommTime CommPower CommMem
1 3.8 1.2 1 0.271247 25000 13

task properties
type ExeCyc DynPwr(uW) StMem DynMem Preem Exable
0 48820 36000 7000 3000 0 1
1 302300 42000 8000 2000 0 1
2 124040 51000 400 400 0 1
3 328210 38000 1600 1400 0 1
4 99520 37000 400 400 0 1
5 895280 60000 3900 1700 0 1

}
#
== ** AMS 0.35 ** ==
#

@ASIC 0 {
price StPwr(uW) freq pins BEvSleep BEvIDLE Area(mm2)
60 10 2500 41 0.01 512 35.50

DVS Vmax vt CommBuffer CommTime CommPower CommArea
0 2.12196 0.402969 1 0.124688 21 32

task properties
type ExeCyc DynPwr(uW) Area Exable
0 222 220 12.33 1
1 142 141 13.20 1
2 40 70 4.38 1
3 125 324 5.49 1
4 146 460 6.23 1
5 42 60 0.93 1

}
#
== ** Xilinx XC2VP7 ** ==
#

@FPGA 0 {
price StPwr(uW) freq pins BEvSleep BEvIDLE CLBs
80 127 2500 53 0.058 1759 1220

DVS Vmax vt CommBuffer CommTime CommPower CommCLB ReconT
0 2.5 0.74 1 0.4339 42.79 213 1000

task properties
type ExeCyc DynPwr(uW) CLB Exable
0 288 1820 252 0
1 160 2590 274 0
2 120 910 66 0
3 163 2620 75 1
4 89 4480 128 1
5 298 390 11 1

}
#
== ** Bus 16bit ** ==
#
@LINK 0 {
price StPwr freq pins BEvSleep maxUser PckSize PckOver aPower
10 775 33000 16 0.3 5 8 33 1881.648

}
#
== ** Memory Module 256kb ** ==
#
@MEM 0 {
price StPwr size IoPwr
5 89.7391 256000 145.237

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

164 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 7.1. Task independent components parameters

independent parameters can be directly derived from data sheets provided by
the component or core manufacturers.

The second group of parameters (task dependent parameters) describe exe-
cution properties of tasks when implemented on a certain processing element.
Consider, for instance, the task independent parameters given in line 12 of the
technology library (Figure 7.10), where task type 1 refers to an FFT task. Exe-

LOPOCOS: A Low Power Co-Synthesis Tool 165

Table 7.2. Task dependent parameters

cuting this algorithm on the ARM7 processor requires 302300 clock cycles and
dissipates an average power of 42mW.

Further, to store the task in the local memory 8000 bytes are required. In
addition, 2000 bytes are allocated dynamically during run-time. The task’s exe-
cution cannot be preempted. Refer to Table 7.2 for a description of the different
task dependent parameters. Task dependent parameters are estimated through
software and hardware profiling on realistic input data or through sophisticated
estimation techniques [32, 58, 95, 144–146].

7.2.2 Architectural Design Space Exploration
A primary goal of the system designer is to find a suitable architecture that

will be embedded together with the application software inside a new product.
However, given the myriad of commercially available components and their
possible combinations to distributed architectures, it is not hard to understand
that a straight-forward architectural choice is not easy, if not impossible. The
intention of LOPOCOS is to ease this design problem by equipping the designer
with a tool that helps to effectively explore different architectural implementa-
tion through an automated design process. This section exemplifies the usage
of LOPOCOS for tool-assisted design space exploration using the smart phone
benchmark. Several different architectural choices are examined for their suit-
ability in terms of cost, performance, area usage, and energy consumption. It
is shown how the careful interpretation of the synthesis outcomes can guide the
designer’s architecture choices to identify solutions of high quality.

Let us consider the following design scenario. Proper product pricing as well
as low energy consumption are key to a successful sale. In order to achieve
the desired market success, the embedded computing system within the smart
phone needs to comply with the following design constraints:

166 SYSTEM-LEVEL DESIGN TECHNIQUES

Table 7.3. Components in a typical technology library

the system price needs to be below $ 120 and

the average power dissipation should not exceed 1.6mW (for an average
user).

Of course, in addition to these constraints the architecture needs to provide a
sufficiently high performance to meet the timing constraints. Certainly, at a
first glance 1.6mW might seem unrealistically low. For a standard Lithium-
Ion battery with 3.7V and 600mAh, this power consumption would result
in a run-time of approximately 58 days
However, considering that additional analogue circuity (receiver, transmitter,
audio amplifiers) as well as the display with background light consume a non-
negligible amount of power, the overall battery life is reduced to several days
[103]. Nevertheless, taking this into account, the digital part of the system (i.e.
the embedded system) is liable for approximately 20–30% of the average power
consumption, making it unavoidable to limit this power dissipation to 1.6mW
or lower.

In order to find an architecture that fulfils the cost, power, and performance
criteria, the designer can choice different components from a technology library
that contains the processing elements and communication links shown in Ta-
ble 7.3. We have restricted the number of components in this table; however, in
reality such a technology library might contain several additional components.
On top of the component names, the table gives some typical price values and
component properties. Equipped with the system specification of the smart
phone and the above given technology library, the designer sets out to exam-
ine different architectural choice for their suitability using LOPOCOS. The

LOPOCOS: A Low Power Co-Synthesis Tool 167

architectural design space exploration can be classified into two optimisation
stages:

Performance optimisation The first goal during the design space exploration
is the identification of such architectures that fulfil performance require-
ments of the application without penalties in area and cost.

Energy Minimisation Once viable architectural implementations have been
established, the next stage in the optimisation hierarchy is the energy min-
imisation. Based on the design knowledge gathered during the performance
optimisation, the designer aims to tune the architecture towards energy effi-
ciency by exploiting DVS and by carefully increasing the available hardware
area to allow the implementation of energy critical tasks in hardware.

The following considers both optimisation steps.

7.2.2.1 Performance Optimisation

Architecture 1: The purpose of the performance optimisation is the identifi-
cation of architectures that fulfil the computational requirements of the smart
phone specification. In accordance to the design cost and performance con-
straints, the designer initially allocates components based on intuition or previous-
design experience. In fact, many new system designs are upgrades from older
products. Upgrading existing systems can significantly cut down the design
costs. Nevertheless, the increasing complexity of new applications demands
the re-evaluation of the architecture’s suitability. For instance, a previously
designed GSM cellular phone is implemented on an architecture that consists
of a low performance 8-bit CPU (including a 1MB RAM) and an ASIC with
an usable area of both interconnected via an bus. The resulting
price of this configuration is $41, according to the components cost given in Ta-
ble 7.3. Considering the GSM transcoder only, the architecture provided suffi-
ciently high performance and even resulted in some performance headroom. To
evaluate if this performance headroom is large enough to additionally perform
the MP3 decoder as well as the JPEG compression/decompression the designer
applies LOPOCOS. Figure 7.11 shows the co-synthesis results for this archi-
tecture as a trade-off between average power dissipation and area penalty. Each
diamond represents a timing feasible implementation, that is, an implementa-
tion that satisfies the imposed deadlines and repetition rates of the individual
smart phone applications. Consider, for instance, the rightmost implementation
candidate which has an average power dissipation of 2.5mW. This solution
shows an area penalty of 2.6, i.e., the available hardware is ex-
ceeded by 2.6 times. As the figure illustrates, all solution candidates found
violate the area constraints (area penalty > 1), hence, the allocated architecture
does not provide sufficient hardware area to accommodate the timing critical

168 SYSTEM-LEVEL DESIGN TECHNIQUES

Figure 7.11. Co-synthesis results of Architecture 1

tasks of the smart phone example. Hence, to viable implement this solution, a
hardware area of at least would be necessary. On
the other hand, using a fast processor instead of the low performance 6052 CPU
would allow to move some timing critical tasks in the design towards software
implementations, and therefore reduce the required area.

Clearly, increasing the hardware area (larger ASIC) as well as allocating a
fast processor would increase the system cost. In the following both possibilities
are examined.

Architecture 2: In the first possibility to improve the system design, the designer
aims to fulfil the hardware requirements of at least This can be
achieved by replacing the current ASIC 0 with an area of by an
ASIC 3 which offers (Table 7.3). In this way, the area requirements
of the smart phone specification should be satisfied. However, the large ASIC
increases the price of the embedded system to $79. The co-synthesis outcome
of LOPOCOS for this configuration is illustrated in Figure 7.12 (indicated
as Architecture 2). As expected, this architecture offers sufficient area and
computational power to perform all applications in the smart phone device
adequately. This is indicated by the rightmost solution with an area penalty of
1 (no area violation) and an average power dissipation of 2.1mW.

LOPOCOS: A Low Power Co-Synthesis Tool 169

Figure 7.12. Co-synthesis results of Architectures 2 and 3

Architecture 3: Let us consider the second possible modification of the initial
allocation. Instead of exchanging ASIC0 with ASIC3, the 6052 8-bit CPU
(6.6M H z) is replaced with a more powerful ARM7DVS (25M H z). The price
for this implementation is $56. The architecture together with the co-synthesis
results are shown in Figure 7.12 (indicated as Architecture 3). As it can be
observed from the figure, this combination of components allows to viably
implement the applications. This is achieved due to the higher performance
of the ARM7 compared to the 6052 CPU, which allows to run more of the
timing critical tasks in software. Yet, the average power dissipation for the
solution with no area penalty (represented rightmost diamond) is close to 6mW,
which exceeds the permitted value of 1.6mW by nearly 4 times. In fact, also
Architecture 2, which achieved an average power dissipation of 2.1mW by
increasing the hardware area, could not satisfy the imposed maximal power
dissipation of 1.6mW.

In summary, the design space exploration carried out so far, concentrated
on area and performance aspects only. Starting from an initial yet not viable
architecture (Architecture 1), the design was refined in two possible directions.
Firstly, by increasing the available hardware (Architecture 2), and secondly, by
increase the performance of the software processor. In both case viable designs
could be synthesised with LOPOCOS, however, none of which could satisfy the
imposed power constraint. The aim of the following design space exploration
is to further refine the system design in order to meet the power constraint.

170 SYSTEM-LEVEL DESIGN TECHNIQUES

7.2.2.2 Energy Minimisation

Having found some viable system designs (Architectures 2 and 3), the next
stage in the design space exploration aims to identify solutions that comply not
only timing and area constrains, but additionally limit the power consumption to
imposed constraint. The main reason to perform the design space exploration
for energy minimisation after the design space exploration for performance
is the increased optimisation time when DVS is considered (tenth of seconds
compared to 1–2 hours, as shown in the experimental results of Chapters 4
and 5). Thus, unnecessary long synthesis runs can be avoided by checking
the area and timing feasibility before examining the architecture for its energy
consumption.

Architectures 2 and 3: The architectures 2 and 3 shown in the Figures 7.12 are
able to adequately perform the smart phone applications. Both designs in-
clude DVS components which have not been exploited during the performance
optimisation. Hence, the following examines both system designs under the
consideration of DVS. Figure 7.14 shows the co-synthesis results. It can be

Figure 7.13. Co-synthesis results for Architectures 2 and 3, exploiting DVS

observed that in both cases the average power dissipation was reduced, as a
comparison between Figures 7.12 and 7.13 reveals. For instance, the power
dissipation of Architecture 2 was reduced from 2.1mW to 1.9mW. Similarly,
the power dissipation of Architecture 3 was reduced from 5.9mW to 3.3mW.
Nevertheless, both architectures still exceed the imposed maximal power dis-

LOPOCOS: A Low Power Co-Synthesis Tool 171

sipation of 1.6mW. To overcome this problem, a further design refinement is
required.

Architectures 4: In general, hardware implementations of tasks are 1–2 orders
of magnitude more energy efficient than software implementations [35]. Hence,
one possible way to reduce the power dissipation is to map more tasks to hard-
ware. Clearly, this necessitates to increase the available hardware area. In
a similar manner, increasing the performance of software-programmable can
help to reduce energy. This is achieved due to the fact that a fast processor is
potentially able to satisfy the performance needs of timing critical tasks that
otherwise would require a hardware implementation. Thus, more hardware
area can be used to efficiently implement task with high energy dissipation. Of
course, faster processor consume more power than their slower counterparts,
hence the design needs to be carefully balanced. Consider, for example, the
target architecture shown in Figure 7.14. This design consists of an ARM7DVS

Figure 7.14. Co-synthesis results for Architecture 4

processor operating at 10MHz and two ASIC which provide areas of
and All components are connected via a single bus. The total
cost of this architecture is $112, which still complies the price limit of $120.
Figure 7.14 shows the co-synthesis results for the architecture, with and with-
out the consideration of DVS. As it can be seen from the figure, if the DVS
feature of ARM7 processor is not exploited, an average power dissipation of
1.7mW can be achieved. This is still higher than the imposed power constraint

172 SYSTEM-LEVEL DESIGN TECHNIQUES

of 1.6mW. However, optimising the implementation under consideration of
DVS, the average power is reduced to 0.7mW. This is the first implementation
that meets all imposed design constraints. The cost is below $120, the tim-
ing constraints and area limitations are not violated, and the dissipated average
power is 0.7mW when using DVS.

It should be noted that this is only one possible solution. Nevertheless, the
system designer might aim to find even better solutions by further exploring the
architectural design space. Finding the presented solution took approximately
4.5 hours on a PentiumIII/1.2GHz PC.

7.3 Concluding Remarks
The architectural design space of distributed embedded systems is vast. Ef-

fective design tools are essential to support the system designers in exploring
this solution space quickly and thoroughly. This chapter has introduced LOPO-
COS, a prototype co-synthesis tool that can be used for high-level system de-
sign as a product planning tool. Considering a real-life smart phone example,
it was demonstrated how LOPOCOS can be used for architectural design space
exploration given a set of typical components. The aim of the design space ex-
ploration is the identification of implementation candidates that not only respect
the imposed timing and area constraints of the application, but further keeps the
system cost and the energy consumption within given limits. Two optimisation
stages are used to refine the design towards performance and energy minimi-
sation. During these stages, LOPOCOS provides valuable feedback in terms
of the co-synthesis trajectory. Based on this feedback, possible bottlenecks in
the design are identified. This, in turn, enables the system designer to carry
out necessary modifications in order to improve the system design. Using the
smart phone benchmark, it was shown that potential architecture can be quickly
identified.

Chapter 8

CONCLUSION

It is very likely that the demand for energy-efficient portable systems, as
well as their complexity, particularly in consumer electronics, will continue to
increase. Computational intensive applications such as multimedia with ad-
vanced audio and video coding techniques, which, until recently, were only
practicable on high-performance stationary workstations, are entering the mo-
bile arena. Designing energy-efficient embedded computing systems for such
applications is a challenging and difficult task. This is because of the tight
energy budget of the powering batteries as well as the massive pressure of the
consumer electronics market with shortening design cycles and low product
costs constraints which are essential for the success of these emerging and
next-generation products. The work presented in this book has focused on the
design of energy-efficient single-mode and multi-mode distributed embedded
systems. To achieve energy-efficient designs, novel techniques and algorithms
have been developed that can be used within co-synthesis frameworks to auto-
mated the design process of such embedded systems. In particular three key
issues have been addressed:

(a) Dynamic voltage scaling was investigated in the context of single-mode dis-
tributed heterogeneous embedded computing systems. For this purpose a
number of algorithms have been proposed. A new power variation-driven
voltage scaling technique, based on a novel energy-gradient strategy, which
overcomes restrictions associated with traditional approaches, has been in-
troduced. In addition, voltage scaling for conditional task graph speci-
fications was outlined. New co-synthesis techniques for scheduling and
mapping have been presented, which were specifically developed for an ef-
fective utilisation of DVS by carefully increasing available slack time on
DVS-enabled processing elements.

173

174 SYSTEM-LEVEL DESIGN TECHNIQUES

(b)

(c)

The design of energy-efficient multi-mode embedded computing systems has
been investigated for the first time and a novel co-synthesis methodology,
which enables an effective sharing of limited hardware resources by con-
sidering mode execution probabilities, has been introduced.

LOPOCOS, a prototype co-synthesis tool that incorporates the techniques
and algorithms proposed in this book, has been developed, with the aim
to extensively automate the system-level design process of energy-efficient
embedded system. The automation of the design process enables an effective
architectural design space exploration, which supports the system designer
in finding a target architecture for high quality system implementations.

The following Section 8.1 will summerise the introduced techniques, and Sec-
tion 8.2 will outline some future directions in the area of low power synthesis.

8.1 Summary
Dynamically voltage-scalable processors, which are capable of rapidly chang-

ing their operational state in terms of voltage and frequency setting “on-the-fly”
in order to trade off energy against performance, have recently become avail-
able. The work presented in this book has focused on the energy minimisation
of such distributed embedded systems that contain DVS processors.

Chapter 3 has introduced a new power variation-driven voltage scaling tech-
nique which takes into account the individual power dissipated by tasks during
the voltage selection, in order to increase the achievable energy savings. A
energy-gradient based heuristic has been developed for this purpose, which
uses a local energy measurement, the energy-gradient, to scale tasks that poten-
tially lead to high energy-efficiency. Using a mapped-and-scheduled task graph
structure (MSTG) allows a propagation of execution time changes throughout
the schedule in linear time; important for a fast execution of the scaling algo-
rithm. Furthermore, the influence of a minimal extension time was investigated
with regard to energy reduction possibility and performance. Experimental
results have shown that up to 38% savings can be achieved for small real-life
benchmarks compared to a more simple and restricted approach that uses a
fixed power model.

In order to further reduce the energy dissipation of embedded systems, a
system-level co-synthesis technique particular tailored for DVS was introduced
in Chapter 4. By appropriately mapping and scheduling the system tasks and
communications, the energy reduction capability of DVS is effectively ex-
ploited. This is achieved through a thorough mapping and scheduling opti-
misation based on a two-step genetic algorithm. In the first step, the schedule
of system activities (tasks and communications) as well as the communication
mapping are optimised not only towards timing feasibility but additionally to-
wards energy minimisation through DVS. This is done using a genetic algorithm

Conclusion 175

with a specialised genome representation that combines schedule and commu-
nication mapping into a single string. The second step is responsible for the
mapping of tasks onto the processing elements of the target architecture, care-
fully balancing the design between area feasibility and energy minimisation.
Both optimisation steps are guided by an energy estimation based on the volt-
age scaling technique introduced in Chapter 3. In this two-step approach, task
mapping and communication mapping have been separated to avoid creation of
infeasible communication mappings. As a result, the search space is restricted
to structurally feasible mapping solutions only, reducing the optimisation time
while maintaining the full possible optimisation potential. Extensive experi-
ments have been conducted including a real-life benchmark of an optical flow
detection algorithm. These experiments have shown that appropriate mapping
and scheduling is essential in order to achieve high energy savings and simul-
taneously timing feasible solutions. The proposed two-step approach based on
genetic algorithms accomplished this in moderate optimisation times.

Chapters 3 and 4 focused on the energy minimisation of single-mode sys-
tems. The co-synthesis approach introduced in Chapter 5 addressed the design
of energy-efficient distributed embedded systems that need to perform multi-
modes. Although many embedded systems often perform single specific func-
tionalities, such a standalone MP3 player, modern and next-generation mobile
devices demand the support for multiple operational modes, i.e., the operation
across a set of several different applications. The fundamental difference be-
tween single mode and multi-mode systems is that multi-mode systems have
the possibility to share computational resources among the individual modes of
operation. Thereby, an effective system-level co-synthesis technique, which ac-
counts for resource sharing, can help to significantly reduce hardware cost. The
multi-mode co-synthesis approach introduced in Chapter 5 is based on a new
system specification model called operational mode state machine (OMSM),
which captures mode interaction together with mode functionality. Consider-
able energy saving are achieved by taking into account the execution proba-
bilities of the different modes during the co-synthesis process. These savings
are possible even without the employment of DVS. The main problem within
this synthesis process was the development of a new mapping strategy which
considers the uneven execution probabilities. This mapping strategy allows
the multiple task implementation on different processing elements, whenever
such multiple implementations reduce the energy consumption without signifi-
cantly increasing the system cost. The mapping optimisation itself is based on a
genetic algorithm. Four new improvement strategies help to improve this opti-
misation process in terms of run-time and solution quality. This is achieved by
carefully pushing the optimisation into promising search space regions. Addi-
tionally, dynamic voltage scaling was investigated in the context of multi-mode
system. A virtual transformation of tasks executing on DVS-enabled hardware

176 SYSTEM-LEVEL DESIGN TECHNIQUES

was shown to be useful in the presence of simultaneously scalable cores which
potentially execute tasks in parallel. Overall, numerous experiments clearly in-
dicate the advantage of taking mode execution probabilities into account during
the co-synthesis.

In Chapter 6, we have concentrated on dynamic voltage scaling in the context
of applications that exhibit extensive control flow. The introduced voltage
scaling technique for conditional task graph specifications identifies the worst
case track and produces a scaled schedule table that ensures the satisfaction of
the imposed deadline, while, at the same time, reduces the energy consumption.
In accordance to condition values, which are produced during run-time of the
application, the suitably scaled voltages are applied based on the scaled schedule
table. Additional slack on non-critical paths is exploited using the techniques of
Chapter 3. Several benchmark experiments were conducted and the outcomes
have illustrate the efficiency of DVS for systems represents through conditional
task graphs.

Finally, Chapter 7 has introduced LOPOCOS, a prototype system-level co-
synthesis tool which incorporates the techniques and algorithms proposed in
Chapters 3, 4, and 5. The tool aids the system designer in finding system
implementations that fulfil the imposed design constraints. Using a real-life
smart phone example, a combination of cellular phone, MP3 player, and dig-
ital camera, it was outlined how LOPOCOS can help to effectively explore
the architectural design space with the aim of finding area and timing feasible
implementation that minimise system cost and energy consumption, simulta-
neously.

In conclusion, the broad aim of this book was to introduce automated de-
sign techniques for energy-efficient distributed embedded systems. A detailed
investigation into dynamic voltage scaling for distributed embedded systems
has shown that substantial energy savings can be achieved through carefully
ordering the execution of activities as well as through an appropriate mapping
of the application on the target architecture. Furthermore, it was shown that the
consideration of the mode execution probabilities (activation times) during the
co-synthesis of multi-mode embedded systems is essential for an appropriate
resource sharing that yields energy-efficient designs. Considering a realistic
smart phone example it was demonstrated that up to 66% in energy savings can
be achieved compared to a naive approach that neglects execution probabilities
as well as dynamic voltage scaling. In essence, when seeking to design energy-
efficient distributed embedded systems, system-level co-synthesis techniques
that consider energy management techniques and mode execution probabilities
(as the approaches presented in this book) should be given serious consideration.

Conclusion 177

8.2 Future Directions
The work outlined in this book could be elaborated in many different di-

rections. The following introduces some relevant areas that will become of
interested in the future.

8.2.1 Leakage Power Reduction
Given the constantly shrinking feature sizes of silicon technology, single

chip systems will be soon accommodate billions of transistors [127]. In order
to reduce the active power consumption of these systems, the nominal supply
voltage is reduced with every new technology generations. Nevertheless, the re-
duction of the nominal supply voltage levels requires an additional down-scaling
of the threshold voltage to maintain high operational frequencies. This lower
threshold voltage comes at the cost of an increased leakage power consumption,
which will become comparable to the active (dynamic) power consumption in
the near future. For instance, the leakage power consumption of an inverter
circuit in the predictive 70nm technology (operating at 125° C) accounts for
approximately 50% of the total power dissipation [86]. While dynamic voltage
scaling is effective in reducing the dynamic power consumption, it is less effi-
cient in limiting the leakage power. One approach to address the leakage power
is adaptive body biasing [86, 102]. Similar to dynamic voltage scaling, which
changes the supply voltage during run-time of an application, it is possible to
scale the transistors’ body bias voltage during operation. Thereby, allowing to
increasing the threshold voltage of the circuit at the cost of a lower performance.
In this context, new system-level synthesis techniques are required that allow
the consideration of a concurrent adaption of the circuit’s supply voltage as well
as its threshold voltage, in order to find a good design trade-off between total
power consumption (leakage and dynamic) and performance.

8.2.2 Energy-aware Granularity Selection
The level of granularity has an influence on the performance optimisation po-

tential of the application as well as on the optimisation time of the co-synthesis
process [75]. Nevertheless, when designing energy-efficient systems, the se-
lected granularity can have an additional effect on the energy aspects of the
implementation possibilities. Consider, for instance, a single task that can be
split into two separate smaller tasks. One of which is active for most of the
computations of the initial task, while the other requires only short execution
time. Clearly, when optimising the mapping it is likely that the initial (sin-
gle) task is placed into hardware due to the lower execution time and power
reduction (correspondingly, low energy consumption). However, in the case of
the split task version, a refined mapping can place the task with high compu-
tational overhead into hardware, while the less computational expensive task

178 SYSTEM-LEVEL DESIGN TECHNIQUES

part is placed into software, avoiding unnecessary waste of hardware resources.
Accordingly, the development of an energy-aware granularity selection scheme
could further improve the co-synthesis process.

8.2.3 Platform Design
As the complexity of embedded systems and underlying hardware continues

to increase, the design cost for these have been risen drastically. For instance, a
single mask set for a state-of-the-art chip exceed a cost of $0.5M. With shrink-
ing feature size this cost will further increase [6, 127]. To cope this tremendous
cost, the design of next-generation system-on-a-chip (SoC) embedded systems
will be most likely based on platforms, i.e., pre-designed hardware architec-
tures that can be used over a set of related applications [85]. Even if this
hardware might be over-designed for the particular application at hand. Nev-
ertheless, a challenging problem is the identification of platforms that allow a
most cost-effective implementation of several different applications. Not only
cost-effectiveness is essential here. Also energy consumption is an aspect that
needs careful consideration when seeking to design a widely usable platform.
System-level co-synthesis can help during the difficult choice of an appropri-
ate platform. For instance, a design team might be confronted with the design
of three different, yet related application (e.g., a smart phone, a PDA, and a
portable MP3/DVD player). The development time and cost of these products
could be significantly reduced if one would find a single hardware architecture
suitable for all three applications. This platform might be over-designed to a
certain extend depending on the application that needs to be implemented, but
the expensive and time consuming hardware design is reduced significantly to a
single design process. Here investigations into concurrent co-design methodol-
ogy for several different applications are needed. Ultimately, the development
of of novel “platform-level” co-synthesis techniques that consider emerging
paradigms, such as networks-on-chip, can aid the designers in finding a good
hardware platform.

8.2.4 Networks on Chip

In the last decade, component reuse has turned out to be one of the most
promising design methodologies to overcome the ever-increasing design pro-
ductivity gap. This is achieved by building new systems-on-single-chips (SoC)
out of pre-designed hardware components, in a similar fashion as software
functions are reused within different applications. Nevertheless, the enormous
advances in silicon technology have enabled the design of systems with several
dozens or hundreds of communicating components residing on the same die.
In order to interconnect these components globally, network-like communica-
tion infrastructures are essential, since long, single bus architectures become

179

Figure 8.1.

inefficient. Such networked systems are today referred to as Network-on-Chip
(NoC) [27, 81]. A typical NoC is shown in Figure 8.1, which consists of several
components operating at different clocks. Communication between these mul-
tiple clock domains is performed over a global network, while intra-component
communication takes place over fast, local links, such as buses. This globally
asynchronous, locally synchronous paradigm is necessary since the transmis-
sion of global signals will soon require several clock cycles to traverse the whole
chip, making it complicated to avoid clock screw.

Certainly, to fully exploit the potential of these next-generation systems,
novel system design methodologies have to be developed. In particular, prob-
lems such as power-aware routing, control protocols for reliable inter-component
communications over unreliable links, and the intrinsic non-determinism of
communication performance have to be addressed. Furthermore, the embed-
ded operation systems, which will run on the NoC architectures, need further
sophistication in order to enable the effective usage of energy management
strategies, considering both communicating and computing power consump-
tion when taking on-line decisions.

Conclusion

References

[1] GNU CC Manual.
available at: http://gcc.gnu.org/.

[2] GNU GCJ: GNU Compiler for Java.
available at: http://gcc.gnu.org/java/.

[3] GNU gprof Manual.
available at: http://www.gnu.org/manual/gprof-2.9.1/gprof.html.

GSM 06.10, Technical University of Berlin.
Source code available at http://kbs.cs.tu-berlin.de/~jutta/toast.html.

Independent JPEG Group: jpeg-6b.
Source code available at ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v6b.tar.gz.

International Technology Roadmap for Semiconductors 2000.
http://public.itrs.net.

Standard Performance Evaluation Corporation.
http://www.specbench.org/.

Synopsys Behavioral Compiler.
http://www.synopsys.com/products/beh_syn/beh_syn.html.

Synopsys Design Compiler.
http://www.synopsys.com/products/logic/design_comp_ds.html.

Synplify from Synplicity.
http://www.synplicity.com/products/.

The Free-IP Project.
http://www.free-ip.com/.

WITAS: The Wallenberg laboratory for research on Information Technology and Au-
tonomous System.
http://www.ida.liu.se/ext/witas/.

181

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Intel® XScale™ Core, Developer’s Manual, December 2000. Order Number 273473-
001.

Mobile AMD Athlon™4, Processor Model 6 CPGA Data Sheet, November 2000. Pub-
lication No 24319 Rev E.

Intel® PXA800F Cellular Processor, Developer’s Manual, February 2003. Order Num-
ber 252569-002.

T. Adam, K. Chandy, and J. Dickson. A Comparison of List Scheduling for Parallel
Processing Systems. J. Communications of the ACM, 17(12):685–690, December 1974.

Alexandra Andrei, Marcus T. Schmitz, Bashir M. Al-Hashimi, and Petru Eles. Overhead-
Conscious Voltage Selection for Dynamic and Leakage Energy Reduction of Time-
Constrained Systems. In Proceedings Design, Automation and Test in Europe Confer-
ence (DATE2004), February 2004.

Thomas Bäck, Ulrich Hammel, and Hans-Paul Schwefel. Evolutionary Computation:
Comments on the History and Current State. IEEE Transactions on Evolutionary Com-
putation, 1(1):3–17, 1997.

Z. Baidas, A. D. Brown, and A. C. Williams. Floting-point Behavioral Synthesis. IEEE
Transactions on Computer-Aided Design, 20(7):828–839, July 2001.

N. Bambha, S. Bhattacharyya, J. Teich, and E. Zitzler. Hybrid Global/Local Search
Strategies for Dynamic Voltage Scaling in Embedded Multiprocessors. In Proceedings
1st International Symposium Hardware/Software Co-Design (CODES’01), pages 243–
248, April 2001.

Armin Bender. Design of an Optimal Loosely Coupled Heterogeneous Multiprocessor
System. In Proceedings European Design Automation Conference, pages 275–281,
March 1996.

L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano. Address Bus Encoding
Techniques for System-Level Power Optimization. In Proceedings Design, Automation
and Test in Europe Conference (DATE98), pages 861–866, March 1998.

Luca Benini, A. Bogliolo, and Giovanni De Micheli. A Survey of Design Techniques
for System-Level Dynamic Power Management. IEEE Transactions on VLSI Systems,
pages 299–316, June 2000.

Luca Benini, A. Bogliolo, G.A. Paleologo, and G. De Micheli. Policy Optimization
for Dynamic Power Management. IEEE Transactions on Computer-Aided Design,
18(6):813–833, June 1999.

Luca Benini, Alessandro Bogliolo, and Giovanni De Mecheli. Dynamic Power Man-
agement of Electronic Systems. In Proceedings IEEE/ACM International Conference
Computer-Aided Design (ICCAD-98), pages 696–702, Nov 1998.

Luca Benini and Giovanni De Micheli. Dynamic Power Management: Design Tech-
niques and CAD Tools. Kluwer Academic Publishers, 1997.

Luca Benini and Giovanni De Micheli. Networks on Chips: A New SoC Paradigm.
IEEE Computer, 35(1):70–78, January 2002.

182

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

SYSTEM-LEVEL DESIGN TECHNIQUES

Luca Benini, Giovanni De Micheli, Enrico Macii, Massimo Poncino, and R. Scarsi.
Symbolic Synthesis of Clock-gating Logic for Power Optimization of Synchronous
Controllers. ACM Transactions on Design Automation of Electronic Systems, 4(4):351–
375, 1999.

Luca Benini, Polly Siegel, and Giovanni De Micheli. Saving Power by Synthesizing
Gated Clocks for Sequential Circuits. IEEE Design & Test of Computers, 11(4):32–41,
1994.

Peter Bjørn-Jørgensen and Jan Madsen. Critical Path Driven Cosynthesis for Het-
erogeneous Target Architectures. In Proceedings 5th International Workshop Hard-
ware/Software Co-Design (Codes/CASHE’97), pages 15 – 19, 1997.

Shekhar Borkar. Design Challenges of Technology Scaling. IEEE Mirco, pages 23–29,
July 1999.

C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. Energy Estimation for 32 bit
Microprocessors. In Proceedings 8th International Workshop Hardware/Software Co-
Design (CODES’00), pages 24–28, May 2000.

Jason J. Brown, Danny Z.Chen, Garrison W. Greenwood, Xiaobo (Sharon) Hu, and
Richard W. Taylor. Scheduling for Power Reduction in a Real-Time System. In Pro-
ceedings International Symposium Low Power Electronics and Design (ISLPED’97),
pages 84–87, 1997.

Thomas D. Burd. Energy-Efficient Processor System Design. PhD thesis, University of
California at Berkeley, 2001.

Thomas D. Burd and Robert W. Brodersen. Processor Design for Portable Systems.
Journal on VLSI Signal Processing, 13(2):203–222, August 1996.

Thomas D. Burd, Trevor A. Pering, Anthony J. Stratakos, and Robert W. Brodersen. A
Dynamic Voltage Scaled Microprocessor System. IEEE Journal on Solid-State Circuits,
35(11):1571–1580, November 2000.

Anantha P. Chandrakasan and Robert W. Brodersen. Low Power Digital CMOS Design.
Kluwer Academic Publisher, 1995.

Anantha P. Chandrakasan, T. Sheng, and Robert W. Brodersen. Low Power CMOS
Digital Design. Journal of Solid State Circuits, 27(4):473–484, April 1992.

Eui-Young Chung, Luca Benini, and Giovanni De Micheli. Contents Provider-Assisted
Dynamic Voltage Scaling for Low Energy Multimedia Applications. In Proceedings
International Symposium Low Power Electronics and Design (ISLPED ’02), pages 42–
47, August 2002.

J. D’Ambrosio and X. Hu. Configuration-Level Hardware/Software Partitioning
for Real-Time Embedded Systems. In Proceedings International Workshop Hard-
ware/Software Co-Design (Codes/CASHE’94), pages 34–41, 1994.

Bharat P. Dave, Ganesh Lakshminarayana, and Niraj K. Jha. COSYN: Hardware-
Software Co-Synthesis of Embedded Systems. In Proceedings IEEE 34th Design Au-
tomation Conference (DAC97), pages 703–708, 1997.

183

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

REFERENCES

G. DeMicheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

Giovanni DeMicheli, David C. Ku, Frederic Mailhot, and Thomas Truong. The Olympus
Synthesis System for Digital Design. IEEE Design & Test of Computers, pages 37–53,
October 1990.

Micheal L. Dertouzos and Aloysius Ka-Lau Mok. Multiprocessor On-Line Scheduling
of Hard-Real-Time Tasks. IEEE Transactions on Software Engineering, 15(12):1497–
1506, December 1989.

Srinivas Devadas and Sharad Malik. A Survey of Optimization Techniques Targeting
Low Power VLSI Circuits. In Proceedings IEEE 32nd Design Automation Conference
(DAC95), pages 242–247, 1995.

Muhammad K. Dhodhi, Imtiaz Ahmad, and Robert Storer. SHEMUS: Synthesis of Het-
erogeneous Multiprocessor Systems. J. Microprocessors and Microsystems, 19(6):311–
319, August 1995.

R. Dick and N. K. Jha. MOCSYN: Multiobjective core-based single-chip system syn-
thesis. In Proceedings Design, Automation and Test in Europe Conference (DATE99),
pages 263–270, March 1999.

R. Dick, D. Rhodes, and W. Wolf. TGFF: Task Graphs for free. In Proceedings 5th
International Workshop Hardware/Software Co-Design (Codes/CASHE’97), pages 97–
101, March 1998.

Robert P. Dick and Niraj K. Jha. MOGAC: A Multiobjective Genetic Algorithm for
Hardware-Software Co-Synthesis of Distributed Embedded Systems. IEEE Transac-
tions on Computer-Aided Design, 17(10):920–935, Oct 1998.

Petru Eles, Alexa Doboli, Paul Pop, and Zebo Peng. Scheduling with Bus Access
Optimization for Distributed Embedded Systems. IEEE Transactions on VLSI Systems,
8(5):472–491, Oct 2000.

Petru Eles, Krzysztof Kuchcinski, Zebo Peng, Alexa Doboli, and Paul Pop. Scheduling
of Conditional Process Graphs for the Synthesis of Embedded Systems. In Proceedings
Design, Automation and Test in Europe Conference (DATE98), pages 132–138, 1998.

Petru Eles, Zebo Peng, Krzysztof Kuchcinski, and Alexa Doboli. System Level Hard-
ware/Software Partitioning Based on Simulated Annealing and Tabu Search. Kluwer
Journal on Design Automation for Embedded Systems, 2:5–32, 1997.

R. Ernst and J. Henkel. Hardware-Software Codesign of Embedded Controllers Based
on Hardware Extraction. In 1st International Workshop Hardware/Software Co-Design
(Codes/CASHE’92), 1992.

R. Ernst, J. Henkel, and Th. Brenner. Hardware-Software Co-synthesis for Mirco-
Controllers. IEEE Design & Test of Computers, 10(4):64–75, Dec 1993.

Rolf Ernst. Codesign of Embedded Systems: Status and Trends. IEEE Design & Test
of Computers, pages 45–54, April 1998.

A. Feller. Automatic layout of low-cost quick-turnaround random-logic custom LSI
devices. In Proceedings IEEE 13th Design Automation Conference (DAC76), pages
97–85, 1976.

184

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

SYSTEM-LEVEL DESIGN TECHNIQUES

Terence C. Fogarty. Varying the probability of mutation in the genetic algorithm. In
Proceedings 3rd International Conference on Genetic Algorithms (ICGA), pages 104–
109, 1989.

W. Fornaciari, D. Sciuto, and C. Silvano. Power Estimation for Architectural Exploration
of HW/SW Communication on System-Level Buses. In Proceedings 7th International
Workshop Hardware/Software Co-Design (CODES’99), pages 152–156, May 1999.

Michael L. Fredman and Robert Endre Tarjan. Fibonacci Heaps and Their Uses in
Improved Network Optimization Algorithms. In Annual Symposium on Foundations of
Computer Science (FOCS 1984), 1984.

Daniel Gajski and Longanath Ramachandran. Introduction to High-Level Synthesis.
IEEE Design and Test of Computers, 2(4):44–54, 1994.

Daniel D. Gajski, Jianwen Zhu, and Rainer Dömer. Essential Issues in Codesign. Tech-
nical report, University of California, Irvine, Department of Information and Computer
Science, June 1997.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the theory of
NP-Completeness. W.H. Freeman and Company, 1979.

Sabih H. Gerez. Algorithms for VLSI Design Automation. John Wiley & Sons Ltd.,
1998.

David E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley Publishing Company, 1989.

James Goodman, Anantha Chandrakasan, and Abram P. Dancy. Design and Implemen-
tation of a Scalable Encryption Procesoor with Embedded Variable DC/DC Converter.
In Proceedings IEEE 36th Design Automation Conference (DAC99), pages 855–860,
1999.

Martin Grajcar. Genetic List Scheduling Algorithm for Scheduling and Allocation on
a Loosely Coupled Heterogeneous Multiprocessor System. In Proceedings IEEE 36th
Design Automation Conference (DAC99), pages 280–285, 1999.

Flavius Gruian. System-Level Design Methods for Low-Energy Architectures Contain-
ing Variable Voltage Processors. In Workshop Power-Aware Computing Systems, Nov
2000.

Flavius Gruian and Krzysztof Kuchcinski. LEneS: Task Scheduling for Low-Energy
Systems Using Variable Supply Voltage Processors. In Proceedings Asia South Pacific
- Design Automation Conference (ASP-DAC’01), pages 449–455, Jan 2001.

R. K. Gupta and G. De Micheli. Hardware/Software Co-synthesis of Digital Systems.
IEEE Design & Test of Computers, pages 29–41, September 1993.

R.K. Gupta. Co-Synthesis of Hardware and Software for Digital Embedded Systems.
PhD thesis, Stanford University, December 1993.

Vadim Gutnik and Anantha Chandrakasan. Embedded Power Supply for Low-Power
DSP. IEEE Transactions on VLSI Systems, 5(4), 425–435 1997.

185

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

REFERENCES

Johan Hagman. mpeg3play-0.9.6.
Source code available at http://home.swipnet.se/~w-10694/tars/mpeg3play-0.9.6-
x86.tar.gz.

Lajos Hanzo, Clare Somerville, and Jason Woodard. Voice Compression and Commu-
nications: Principles and Applications for Fixed and Wireless Channels. John Wiley &
Sons Inc., 2001.

Jörg Henkel. A Low Power Hardware/Software Partitioning Approach for Core-
Based Embedded Systems. In Proceedings IEEE 36th Design Automation Conference
(DAC99), pages 122–127, 1999.

Jörg Henkel and Rolf Ernst. An Approach to Automated Hardware/Software Partitioning
using a Flexible Granularity that is driven by High-Level Estimation Techniques. IEEE
Transactions on VLSI Systems, 9(2):273–289, 2001.

Inki Hong, Darko Kirovski, Gang Qu, Miodrag Potkonjak, and Mani B. Srivastava.
Power Optimization of Variable-Voltage Core-Based Systems. IEEE Transactions on
Computer-Aided Design, 18(12):1702–1714, Dec 1999.

Inki Hong, Gang Qu, Miodrag Potkonjak, and Mani B. Srivastava. Synthesis Techniques
for Low-Power Hard Real-Time Systems on Variable Voltage Processors. In Proceedings
Real-Time Systems Symposium, 1998.

Junwei Hou and Wayne Wolf. Process Partitioning for Distributed Embedded Sys-
tems. In Proceedings 4th International Workshop Hardware/Software Co-Design
(Codes/CASHE’96), pages 70 – 76, March 1996.

Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online Strategies for Dynamic Power
Management in Systems with Multiple Power-Saving States. ACM Transactions on
Embedded Computing Systems, 2(3):325–346, August 2003.

Tohru Ishihara and Hiroto Yasuura. Voltage Scheduling Problem for Dynamically Vari-
able Voltage Processors. In Proceedings International Symposium Low Power Electron-
ics and Design (ISLPED’98), pages 197–202, 1998.

Axel Jantsch and Hannu Tenhunen (Eds.). Networks on Chip. Kluwer Academic Pub-
lishers, 2003.

Niraj K. Jha. Low Power System Scheduling and Synthesis. In Proceedings IEEE/ACM
International Conference Computer-Aided Design (ICCAD-01), pages 259–263, 2001.

Asawaree Kalavade and Edward A. Lee. A Global Criticality/Local Phase Driven Al-
gorithm for the Constrained Hardware/Software Partitioning Problem. In Proceedings
International Workshop Hardware/Software Co-Design (Codes/CASHE’94), pages 42–
48, Sept. 1994.

Asawaree Kalavade and P. A. Subrahmanyam. Hardware/Software Partitiong for Multi-
function Systems. IEEE Transactions on Computer-Aided Design, 17(9):819–836, Sep
1998.

Kurt Keutzer, Sharad Malik, A. Richard Newton, Jan M. Rabaey, and A. Sangiovanni-
Vincentelli. System-Level Design: Orthogonalization of Concerns and Platform-Based

186

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

SYSTEM-LEVEL DESIGN TECHNIQUES

Design. IEEE Transactions on Computer-Aided Design, 19(12): 1523–1543, December
2000.

C. Kim and K. Roy. Dynamic Vth Scaling Scheme for Active Leakage Power Reduction.
In Proceedings Design, Automation and Test in Europe Conference (DATE2002), pages
163–167, March 2002.

Alexander Klaiber. The Technology behind Crusoe Processors. January 2000.
http://www.transmeta.com.

P. V. Knudsen and J. Madsen. Integrating Communication Protocol Selection with Hard-
ware/Software Codesign. IEEE Transactions on Computer-Aided Design, 18(9): 1077–
1095, Aug 1999.

Peter V. Knudsen and Jan Madsen. PACE: A Dynamic Programming Algorithm for
Hardware/Software Partitioning. In Proceedings 4th International Workshop Hard-
ware/Software Co-Design (Codes/CASHE’96), pages 85 – 92, March 1996.

Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic Critical-Path Scheduling: An Effec-
tice Technique for Allocating Task Graphs to Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 7(5):506–521, May 1996.

Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors. ACM Computing Surveys, 31(4):406–471,
December 1999.

Kanishka Lahiri, Anand Raghunathan, Sujit Dey, and Debashis Panigrahi. Battery-
Driven System Design: A New Frontier in Low Power Design. pages ??–??

Rainer Leupers and Peter Marwedel. Retargetable Compiler Technology for Embedded
Systems - Tools and Applications. Kluwer Academic Publishers, 2001.

Y. Li and J. Henkel. A Framework for Estimating and Minimizing Energy Dissipation of
Embedded HW/SW Systems. In Proceedings IEEE 35th Design Automation Conference
(DAC98), pages 188–193, 1998.

Y.-T. S. Li, S. Malik, and A. Wolfe. Performance Estimation of Embedded Software
with Instruction Cache Modeling. In Proceedings IEEE/ACM International Conference
Computer-Aided Design (ICCAD-95), pages 380–387, November 1995.

Jinfeng Liu, Pai H. Chou, and Nader Bagherzadeh. Communication Speed Selection for
Embedded Systems with Networked Voltage-Scalable Processors. In Proceedings 2nd
International Symposium Hardware/Software Co-Design (CODES’02), pages 169–174,
2002.

J. R. Lorch and A. J. Smith. Software Strategies for Portable Computer Energy Man-
agement. IEEE Personal Communications, 5(3):60–73, June 1998.

Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Low-Power Task Scheduling
for Muliple Devices. In Proceedings 8th International Workshop Hardware/Software
Co-Design (CODES’00), pages 39–43, 2000.

Jiong Luo and Niraj K. Jha. Power-conscious Joint Scheduling of Periodic Task Graphs
and Aperiodic Tasks in Distributed Real-time Embedded Systems. In Proceedings

187

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

REFERENCES

IEEE/ACM International Conference Computer-Aided Design (ICCAD-00), pages 357–
364, Nov 2000.

Jiong Luo and Niraj K. Jha. Battery-aware Static Scheduling for Distributed Real-
Time Embedded Systems. In Proceedings IEEE 38th Design Automation Conference
(DAC01), pages 444–449, 2001.

Jan Madsen and Peter Bjørn-Jørgensen. Embedded System Synthesis under Memory
Constrains. In Proceedings 7th International Workshop Hardware/Software Co-Design
(CODES’99), pages 188 – 192, 1999.

S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined Dynamic Voltage Scaling
and Adaptive Body Biasing for Lower Power Microprocessors under Dynamic Work-
loads. In Proceedings IEEE/ACM International Conference Computer-Aided Design
(ICCAD-02), pages 721–725, 2002.

Sven Mattisson. Minimizing Power Dissipation of Cellular Phones. In Proceedings
International Symposium Low Power Electronics and Design (ISLPED ’97), pages 42–
45, 1997.

G. De Micheli and R. K. Gupta. Hardware/Software Co-Design. In Proceedings of the
IEEE, pages 349–365, March 1997.

Giovanni De Micheli, Rolf Ernst, and Wayne Wolf. Readings in Hardware/Software
Co-Design. Morgan Kaufmann Publishers, 2002.

B. Mochocki, X. Hu, and G. Quan. A Realistic Variable Voltage Scheduling Model
for Real-Time Applications. In Proceedings IEEE/ACM International Conference
Computer-Aided Design (ICCAD-02), pages 726–731, 2002.

J. Monteiro, S. Devadas, and A. Ghosh. Retiming Sequential Circuits for Low Power.
In Proceedings IEEE/ACM International Conference Computer-Aided Design (ICCAD-
93), pages 398–402, 1993.

J. Monteiro, S. Devadas, and A. Ghosh. Sequential logic optimization for low power
using input disabling precomputation architectures. IEEE Transactions on Computer-
Aided Design, 17(3):279–284, March 1998.

W. Namgoong, M. Yu, and T. Meng. A High-Efficiency Variable-Voltage CMOS Dy-
namic dc-dc Switching Regulator. In Proceedings International Solid-State Circuits
Conference, pages 380–381, 1997.

David Naylor and Simon Jones. VHDL: A Logic Synthesis Approach. Chapman-Hall,
1997.

Hyunok Oh and Soonhoi Ha. A Static Scheduling Heuristic for Heterogeneous Proces-
sors. In 2nd International EuroPar Conference Vol. II, August 1996.

Hyunok Oh and Soonhoi Ha. A Hardware-Software Cosynthesis Technique Based on
Heterogeneous Multiprocessor Scheduling. In Proceedings 7th International Workshop
Hardware/Software Co-Design (CODES’99), pages 183–187, May 1999.

Hyunok Oh and Soonhoi Ha. Hardware-Software Cosynthesis of Multi-Mode Multi-
Task Embedded Systems with Real-Time Constraints. In Proceedings 2nd International
Symposium Hardware/Software Co-Design (CODES’02), pages 133–138, May 2002.

188

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

SYSTEM-LEVEL DESIGN TECHNIQUES

P. R. Panda and N. D. Dutt. Reducing Address Bus Transitions for Low Power Memory
Mapping. In IEEE European Design and Test Conference, pages 63–67, March 1996.

M. Pedram and Q. Wu. Design Considerations for Battery-powered Electronics. In
Proceedings IEEE 36th Design Automation Conference (DAC99), pages 861–866,1999.

Massoud Pedram. Power Minimization in IC Design: Principles and Applications. ACM
Transactions Design Automation of Electronic Systems (TODAES), 1(1):3–56, Jan 1996.

P. Pedro and Alan Burns. Schedulability Analysis for Mode Changes in Flexible Real-
time Systems. In Proceddings Euromicro Workshop on Real-Time Systems, pages 17–19,
June 1998.

Paul Pop, Petru Eles, and Zebo Peng. Bus Access Optimization for Distributed Em-
bedded Systems Based on Schedulability Analysis. In Proceedings Design, Automation
and Test in Europe Conference (DATE2000), pages 567–574, 2000.

Paul Pop, Petru Eles, and Zebo Peng. Scheduling with Optimized Communication
for Time-Triggered Embedded Systems. In Proceedings 8th International Workshop
Hardware/Software Co-Design (CODES’00), pages 62–66, 2000.

Paul Pop, Petru Eles, Traian Pop, and Zebo Peng. An Approach to Incremental De-
sign of Distributed Embedded Systems. In Proceedings IEEE 38th Design Automation
Conference (DAC01), pages 450–455, 2001.

S. Prakash and A. Parker. SOS: Synthesis of Application-Specific Heterogeneous Mul-
tiprocessor Systems. J. Parallel & Distributed Computing, pages 338–351, Dec 1992.

A. Raghunathan and N.K. Jha. SCALP: An iterative improvement based low-power data
path synthesis algorithm. IEEE Transactions on Computer-Aided Design, 16(11): 1260–
1277, November 1997.

A. Raghunathan, N. K. Niraj, and Sujit Dey. High-Level Power Analysis and Optimiza-
tion. Kluwer Academic Publishers, 1998.

Daler Rakhmatov and Sarma Vrudhula. Energy Management for Battery-Powered Em-
bedded Systems. ACM Transactions on Embedded Computing Systems, 2(3):277–324,
August 2003.

Krithi Ramamritham and John A. Stankovic. Scheduling Algorithms and Operating
Systems Support for Real-time Systems. Proceedings of the IEEE, 81(1):55–67, 1994.

R. L. Rhodes and Wayne Wolf. Co-Synthesis of Heterogeneous Multiprocessor Systems
using Arbitrated Communication. In Proceedings IEEE/ACM International Conference
Computer-Aided Design (ICCAD-99), pages 339–342, 1999.

International Technology Roadmap for Semiconductors.
http://notes.sematech.org/ntrs/PublNTRS.nsf.

Alex Rogers and Adam Prügel-Bennett. Modelling the dynamics of a steady-state genetic
algorithm. In Foundations of Genetic Algorithms (FOGA-5), pages 57–68. Sept 1999.

James A. Rowson. Hardware/Software Co-Simulation. In Proceedings IEEE 31st Design
Automation Conference (DAC94), pages 439–440, 1994.

189

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

REFERENCES

Kaushik Roy and Sharat C. Prasad. Low-Power CMOS VLSI Circuit Design. Wiley-
Interscience, 2000.

Andrew Rushton. VHDL for Logic Synthesis. John Wiley & Son Ltd, 1998.

D. Saha, R. S. Mitra, and A. Basu. Hardware Software Partitioning using Genetic
Algorithm. In 10th International Conference on VLSI Design, pages 155–160, January
1997.

Marcus T. Schmitz and Bashir M. Al-Hashimi. Considering Power Variations of DVS
Processing Elements for Energy Minimisation in Distributed Systems. In Proceedings
International Symposium System Synthesis (ISSS’01), pages 250–255, October 2001.

E. M. Sentovitch, K. J. Singh, Luciano Lavagno, Cho Moon, Rajeev Murgai, Alexander
Saldanha, Hamid Savoj, Paul R. Stephan, Robert K. Brayton, and Alberto Sangiovanni-
Vincentelli. SIS: A System for Sequential circuit synthesis. Technical report, University
of California, Berkeley, May 1992.

L. Sha, R. Rajkumar, J. Lehoczky, and K Ramamritham. Mode Change Protocols for
Priority-driven Preemptive Scheduling. 1:243–265, December 1989.

Y. Shin, D. Kim, and K. Choi. Schedulability-Driven Performance Analysis of Multiple
Mode Embedded Real-Time Systems. In Proceedings IEEE 37th Design Automation
Conference (DAC00), pages 495–500, June 2000.

Youngsoo Shin and Kiyoung Choi. Power Conscious Fixed Priority Scheduling for
Hard Real-Time Systems. In Proceedings IEEE 36th Design Automation Conference
(DAC99), pages 134–139, 1999.

Gilbert C. Sih and Edward A. Lee. A Compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures. IEEE Transactions
on Parallel and Distributed Systems, 4(2): 175–187, February 1993.

T. Simunic, L. Benini, and G. De Micheli. Energy-Efficient Design of Battery-Powered
Embedded Systems. In Proceedings International Symposium Low Power Electronics
and Design (ISLPED’99), pages 212–217, 1999.

M. Srivastava, A. Chandrakasan, and R. Brodersen. Predictive System Shutdown and
other Architectural Techniques for Energy Efficient Programmable Computations. IEEE
Transactions on VLSI Systems, 4(1):42–55, March 1996.

M. R. Stan and W. P. Burleson. Bus-Inverse Coding for Low-Power I/O. IEEE Trans-
actions on VLSI Systems, 3(1):49–58, March 1995.

Jorgen Staunstrup and Wayne Wolf. Hardware/Software Co-Design: Principles and
Practice. Kluwer Academic Publishers, 1997.

J. Teich, T. Blickle, and Lothar Thiele. An Evolutionary Approach to System-Level
Synthesis. In Proceedings 5th International Workshop Hardware/Software Co-Design
(Codes/CASHE’97), pages 167–171, March 1997.

V. Tiwari and M. Lee. Power Analysis of a 32-bit Embedded Microcontroller. In
ASP-DAC, pages 141–148, Aug 1995.

190

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

SYSTEM-LEVEL DESIGN TECHNIQUES

V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction Level Power Analysis and
Optimization of Software. Journal of VLSI Signal Processing Systems, 13(2–3):223–
238, 1996.

Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power Analysis of Embedded Soft-
ware: A First Step Towards Software Power Minimization. IEEE Transactions on VLSI
Systems, Dec 1994.

C-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. Despain, and B. Lin. Precomputation-
Based Sequential Logic Optimization for Low Power. IEEE Transactions on VLSI
Systems, 2(4):426–436, December 1994.

K. S. Vallerio and N. K. Jha. Task graph extraction for embedded system synthesis. In
International Conference on VLSI Design, pages 480–486, January 2003.

Bhaskaran Vasuder. Image and Video Compression Standards. Kluwer Academic Pub-
lisher, 1997.

Matthew Wall. GAlib: A C++ Library of Genetic Algorithm Components Version 2.45,
August 1996.
available at: http://lancet.mit.edu/ga.

John Watkinson. The engineer’s guide to compression. Snell & Wilcox, 1996.

M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for Reduced CPU Energy.
In Proceedings USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 13–23, 1994.

T. Wiangtong, Peter Y.K. Cheung, and W. Luk. Comparing Three Heuristic Search Meth-
ods for Functional Partitioning in Hardware-Software Codesign. Design Automation for
Embedded Systems, 6(4):425–449, July 2002.

A. C. Williams. A Behavioural VHDL Synthesis System using Data Path Optimisation.
PhD thesis, University of Southampton, October 1997.

A. C. Williams, A. D. Brown, and M. Zwolinski. Simultaneous optimisation of dy-
namic power, area and delay in behavioural synthesis. IEE Proc.-Comput. Digit. Tech.,
147(6):383–390, November 2000.

Wayne H. Wolf. Hardware/Software Co-Design of Embedded Systems. In Proceedings
of the IEEE, pages 967–989, July 1994.

Wayne H. Wolf. An Architectural Co-Synthesis Algorithm for Distributed, Embedded
Computing Systems. IEEE Transactions on VLSI Systems, 5(2):218–229, June 1997.

M. Wu and D. Gajski. Hypertool: A Programming Aid for Message-passing Systems.
IEEE Transactions on Parallel and Distributed Systems, 1(3):330–343, July 1990.

Y. Xie and Wayne Wolf. Allocation and Scheduling of Conditional Task Graph in Hard-
ware/Software Co-Synthesis. In Proceedings Design, Automation and Test in Europe
Conference (DATE2001), pages 620 – 625, March 2001.

191

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

REFERENCES

Peng Yang, Paul Marchal, Chun Wong, Stefaan Himpe, Francky Catthoor, Patrick David,
Johan Vounckx, and Rudy Lauwereins. Managing Dynamic Concurrent Tasks in Embed-
ded Real-Time Multimedia Systems. In Proceedings International Symposium System
Synthesis (ISSS’02), pages 112–119, October 2002.

Frances Yao, Alan Demers, and Scott Shenker. A Scheduling Model for Reduced CPU
Energy. In IEEE Symposium on Foundations of Comp. Science, pages 374–382, 1995.

Y. Zhang, X. Hu, and D. Chen. Energy Minimization of Real-time Tasks on Variable
Voltage Processors with Transition Energy Overhead. In Proc. ASP-DAC’03, pages
65–70, 2003.

Yumin Zhang, Xiaobo (Sharon) Hu, and Denny Z. Chen. Task Scheduling and Voltage
Selection for Energy Minimization. In Proceedings IEEE 39th Design Automation
Conference (DAC02), pages 183–188, 2002.

192

[160]

[161]

[162]

[163]

SYSTEM-LEVEL DESIGN TECHNIQUES

Index

Activation profile, 102, 111
Active energy, 21
Active power, 20–21
Activity scheduling, 3, 11
Allocation, 3, 8
Application mapping, 3, 9
Application software, 2
Architecture allocation, 3, 8
Architecture selection, 3, 8
Assembler, 17

Behavioural synthesis, 15
Benchmark

fast Fourier transformation, 51
GSM voice transcoder, 152
JPEG image coding, 156
Karplus-Strong music synthesis, 51
measurement application, 51
MP3 decoder, 153
optical flow detection, 95
quadrature mirror filter bank, 51
smart phone, 128
vehicle cruise controller, 146

Body bias voltage
transistor, 24

Circuit delay, 22–23
Communication energy, 30
Communication mapping, 84
Communication power, 30
Compiler, 16
Component allocation, 95
Component trade-offs, 8
Computing clusters, 72
Conditional Task Graph, 133
Condition value, 134
Core, 103, 106
Core allocation, 118
Co-synthesis, 6, 30
Crossover, 67, 70

Data flow extraction, 153
DC/DC voltage converter, 25, 119
Design flow, 2
Discrete voltage scaling, 48
Distributed heterogeneous architecture, 2
DVS processor, 25
Dynamic power dissipation, 20
Dynamic power management, 26
Dynamic voltage scaling, 25

CTGs, 136, 139
Discrete voltages, 48
distributed systems, 35

Embedded system, 2
Energy

communication, 29–30
Energy/delay trade-off, 23
Energy dissipation, 19

Processing elements, 19
Energy gradient, 36, 44
Energy management, 3, 12
Energy minimisation, 24, 167, 170

Co-synthesis, 31
Energy

switching, 21
Execution probabilities, 111

estimation, 111
Extension factor, 39
Extension time

minimal, 55

Function collapsing, 153

Gated clocks, 35–36
Genetic algorithms, 67

crossover, 67, 70
fitness, 67
mutation, 68, 71
scheduling, 68–69

Genetic list scheduling algorithm, 68–69

Hardware/software co-synthesis, 6, 30

193

194 SYSTEM-LEVEL DESIGN TECHNIQUES

Hardware synthesis, 15
High-level synthesis, 15
Hole filling, 72

Idle time, 13, 29

Layout synthesis, 16
Leakage power, 20, 23
List scheduling, 69
Logic synthesis, 15
Loop unrolling, 153

Mapped and scheduled task graph, 45
Mapping, 3, 9
Mode execution probabilities, 111
Mode transition, 104, 111–112
Multi-mode system, 99
Multi-objective optimisation, 71
Multiple task types, 104
Mutation, 68, 71

Networks on chip, 178

Off-line scheduling, 66
On-line scheduling, 66
Operational frequency, 23
Operational mode state machine, 100–101

Performance optimisation, 167
Power

bias, 20
communication, 29–30

dynamic, 20
leakage, 20, 23
short-circuit, 20
static, 20
switching, 20–21

Power variations, 51

Real activation probabilities, 126

Scaling factor, 137
Schedule table, 135
Scheduling, 3, 11 , 62

techniques, 66
Slack time, 13, 29
Software synthesis, 16
Static power dissipation, 20
Switching energy, 21
Switching power, 20–21
System-level co-synthesis, 6, 30
System specification, 3, 5

Task graph, 5
Task mapping, 3, 9
Task scheduling, 11
Task type, 102–103
Technology library, 3, 158, 161
Threshold voltage, 24
Tracks, 134

Worst case slack time, 139
Worst case track, 139

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

